

LwPKT documentation

Welcome to the documentation for version .

LwPKT is a generic packet protocol library optimized for embedded systems.

[image: _images/logo.svg]Download library Getting started Open Github [https://github.com/MaJerle/lwpkt] Donate [https://paypal.me/tilz0R]

Features

	Written in C (C11), compatible with size_t for size data types

	Platform independent, no architecture specific code

	Uses LwRB [https://github.com/MaJerle/lwrb] library for data read/write operations

	Support for events on packet ready, read or write operation

	Optimized for embedded systems, allows high optimization for data transfer

	Configurable settings for packet structure and variable data length

	Allows multiple notes in network with from and to addresses

	Separate optional field for command data type

	Variable data length to support theoretically unlimited packet length

	CRC check to handle data transmission errors

	User friendly MIT license

Applications

To name a few:

	Communication in RS-485 network between various devices

	Low-level point to point packet communication (UART, USB, ethernet, …)

Requirements

	C compiler

	Few kB of non-volatile memory

Contribute

Fresh contributions are always welcome. Simple instructions to proceed:

	Fork Github repository

	Respect C style & coding rules [https://github.com/MaJerle/c-code-style] used by the library

	Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

	Report a bug

	Ask for a feature request

License

MIT License

Copyright (c) 2024 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Table of contents

Contents

	LwPKT documentation

	Getting started
	Download library

	Add library to project

	Configuration file

	Minimal example code

	User manual
	Packet structure

	Data input output

	Variable data length

	Static & dynamic feature

	Event management

	API reference
	LwPKT

	Configuration

	Changelog

	Authors

Getting started

Getting started may be the most challenging part of every new library.
This guide is describing how to start with the library quickly and effectively

Download library

Library is primarly hosted on Github [https://github.com/MaJerle/lwpkt].

You can get it by:

	Downloading latest release from releases area [https://github.com/MaJerle/lwpkt/releases] on Github

	Cloning main branch for latest stable version

	Cloning develop branch for latest development

Download from releases

All releases are available on Github releases area [https://github.com/MaJerle/lwpkt/releases].

Clone from Github

First-time clone

This is used when you do not have yet local copy on your machine.

	Make sure git is installed.

	Open console and navigate to path in the system to clone repository to. Use command cd your_path

	Clone repository with one of available options below

	Run git clone --recurse-submodules https://github.com/MaJerle/lwpkt command to clone entire repository, including submodules

	Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/lwpkt to clone development branch, including submodules

	Run git clone --recurse-submodules --branch main https://github.com/MaJerle/lwpkt to clone latest stable branch, including submodules

	Navigate to examples directory and run favourite example

Update cloned to latest version

	Open console and navigate to path in the system where your repository is located. Use command cd your_path

	Run git pull origin main command to get latest changes on main branch

	Run git pull origin develop command to get latest changes on develop branch

	Run git submodule update --init --remote to update submodules to latest version

Note

This is preferred option to use when you want to evaluate library and run prepared examples.
Repository consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root repository.

Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.
Next step is to add the library to the project, by means of source files to compiler inputs and header files in search path.

CMake is the main supported build system. Package comes with the CMakeLists.txt and library.cmake files, both located in the lwpkt directory:

	CMakeLists.txt: Is a wrapper and only includes library.cmake file. It is used if target application uses add_subdirectory and then uses target_link_libraries to include the library in the project

	library.cmake: It is a fully configured set of variables. User must use include(path/to/library.cmake) to include the library and must manually add files/includes to the final target

Tip

Open library.cmake file and manually analyze all the possible variables you can set for full functionality.

If you do not use the CMake, you can do the following:

	Copy lwpkt folder to your project, it contains library files

	Add lwpkt/src/include folder to include path of your toolchain. This is where C/C++ compiler can find the files during compilation process. Usually using -I flag

	Add source files from lwpkt/src/ folder to toolchain build. These files are built by C/C++ compiler. CMake configuration comes with the library, allows users to include library in the project as subdirectory and library.

	Copy lwpkt/src/include/lwpkt/lwpkt_opts_template.h to project folder and rename it to lwpkt_opts.h

	Build the project

Configuration file

Configuration file is used to overwrite default settings defined for the essential use case.
Library comes with template config file, which can be modified according to the application needs.
and it should be copied (or simply renamed in-place) and named lwpkt_opts.h

Note

Default configuration template file location: lwpkt/src/include/lwpkt/lwpkt_opts_template.h.
File must be renamed to lwpkt_opts.h first and then copied to the project directory where compiler
include paths have access to it by using #include "lwpkt_opts.h".

Tip

If you are using CMake build system, define the variable LWPKT_OPTS_DIR before adding library’s directory to the CMake project.
Variable must set the output directory path. CMake will copy the template file there, and name it as required.

Configuration options list is available available in the Configuration section.
If any option is about to be modified, it should be done in configuration file

Template configuration file

 1/**
 2 * \file lwpkt_opts_template.h
 3 * \brief LwPKT configuration file
 4 */
 5
 6/*
 7 * Copyright (c) 2024 Tilen MAJERLE
 8 *
 9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwPKT - Lightweight packet protocol library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v1.3.0
33 */
34#ifndef LWPKT_OPTS_HDR_H
35#define LWPKT_OPTS_HDR_H
36
37/* Rename this file to "lwpkt_opts.h" for your application */
38
39/*
40 * Open "include/lwpkt/lwpkt_opt.h" and
41 * copy & replace here settings you want to change values
42 */
43
44#endif /* LWPKT_OPTS_HDR_H */

Note

If you prefer to avoid using configuration file, application must define
a global symbol LWPKT_IGNORE_USER_OPTS, visible across entire application.
This can be achieved with -D compiler option.

Minimal example code

To verify proper library setup, minimal example has been prepared.
Run it in your main application file to verify its proper execution

Absolute minimum example

 1#include <stdio.h>
 2#include "lwpkt/lwpkt.h"
 3
 4/* LwPKT data */
 5static lwpkt_t pkt;
 6static lwrb_t pkt_tx_rb, pkt_rx_rb;
 7static uint8_t pkt_tx_rb_data[64], pkt_rx_rb_data[64];
 8
 9/* Data to read and write */
 10static const char* data = "Hello World\r\n";
 11
 12/**
 13 * \brief LwPKT example code
 14 */
 15void
 16example_lwpkt(void) {
 17 lwpktr_t res;
 18 uint8_t b;
 19
 20 printf("---\r\nLwPKT default example..\r\n\r\n");
 21
 22 /*
 23 * Initialize both ring buffers, for TX and RX operations
 24 *
 25 * Initialize LwPKT and link buffers together
 26 */
 27 lwrb_init(&pkt_tx_rb, pkt_tx_rb_data, sizeof(pkt_tx_rb_data));
 28 lwrb_init(&pkt_rx_rb, pkt_rx_rb_data, sizeof(pkt_rx_rb_data));
 29 lwpkt_init(&pkt, &pkt_tx_rb, &pkt_rx_rb);
 30
 31#if LWPKT_CFG_USE_ADDR
 32 /* Set device address (if feature enabled) */
 33 lwpkt_set_addr(&pkt, 0x12);
 34#endif /* LWPKT_CFG_USE_ADDR */
 35
 36 /*
 37 * Write packet to the TX ringbuffer,
 38 * act as device wants to send some data
 39 */
 40 res = lwpkt_write(&pkt,
 41#if LWPKT_CFG_USE_ADDR
 42 0x11, /* End address to whom to send */
 43#endif /* LWPKT_CFG_USE_ADDR */
 44#if LWPKT_CFG_USE_FLAGS
 45 0x12345678,
 46#endif /* LWPKT_CFG_USE_FLAGS */
 47#if LWPKT_CFG_USE_CMD
 48 0x85, /* Command type */
 49#endif /* LWPKT_CFG_USE_CMD */
 50 data, strlen(data)); /* Length of data and actual data */
 51
 52 /*
 53 * LwPKT wrote data to pkt_tx_rb ringbuffer
 54 * Now actually transmit data over your interface
 55 * (USART for example, ...)
 56 */
 57
 58 /*
 59 * For the purpose of this example, application will
 60 * fake data transmission by doing reading from TX buffer
 61 * and writing it to RX buffer
 62 */
 63 while (lwrb_read(&pkt_tx_rb, &b, 1) == 1) {
 64 lwrb_write(&pkt_rx_rb, &b, 1);
 65 }
 66
 67 /*
 68 * Here we have our data in RX buffer
 69 * means we received data over network interface
 70 */
 71
 72 /* Now read and process packet */
 73 res = lwpkt_read(&pkt);
 74
 75 if (res == lwpktVALID) {
 76 size_t len;
 77
 78 /* Packet is valid */
 79 printf("Packet is valid!\r\n");
 80
 81 /* Print debug messages for packet */
 82#if LWPKT_CFG_USE_ADDR
 83 printf("Packet from: 0x%08X\r\n", (unsigned)lwpkt_get_from_addr(&pkt));
 84 printf("Packet to: 0x%08X\r\n", (unsigned)lwpkt_get_to_addr(&pkt));
 85#endif /* LWPKT_CFG_USE_ADDR */
 86#if LWPKT_CFG_USE_FLAGS
 87 printf("Packet flags: 0x%08X\r\n", (unsigned)lwpkt_get_flags(&pkt));
 88#endif /* LWPKT_CFG_USE_FLAGS */
 89#if LWPKT_CFG_USE_CMD
 90 printf("Packet cmd: 0x%02X\r\n", (unsigned)lwpkt_get_cmd(&pkt));
 91#endif /* LWPKT_CFG_USE_CMD */
 92 printf("Packet data length: 0x%08X\r\n", (unsigned)lwpkt_get_data_len(&pkt));
 93 if ((len = lwpkt_get_data_len(&pkt)) > 0) {
 94 uint8_t* d = lwpkt_get_data(&pkt);
 95 printf("Packet data: ");
 96 for (size_t i = 0; i < len; ++i) {
 97 printf("0x%02X ", (unsigned)d[i]);
 98 }
 99 printf("\r\n");
100 }
101
102 /* Check who should be dedicated receiver */
103#if LWPKT_CFG_USE_ADDR
104 if (lwpkt_is_for_me(&pkt)) {
105 printf("Packet is for me\r\n");
106 } else if (lwpkt_is_broadcast(&pkt)) {
107 printf("Packet is broadcast to all devices\r\n");
108 } else {
109 printf("Packet is for device ID: 0x%08X\r\n", (unsigned)lwpkt_get_to_addr(&pkt));
110 }
111#endif /* LWPKT_CFG_USE_ADDR */
112 } else if (res == lwpktINPROG) {
113 printf("Packet is still in progress, did not receive yet all bytes..\r\n");
114 } else {
115 printf("Packet is not valid!\r\n");
116 }
117}

User manual

LwPKT protocol library is a simple state-machine parser and raw data generator
to allow 2 or more devices in a network to communicate in a structure way.

It is perfectly suitable for communication in embedded systems, suchs as RS-485, where multiple
devices could be easily connected to one big network.

LwPKT library uses well known and easy implementation of LwRB [https://github.com/MaJerle/lwpkt] library
for data read and data write. It expects 2 different buffer instances.

Parser is simple state machine that reads and processes every received character from read buffer.
When application wants to transmit data, LwPKT library generates raw data and writes them to TX buffer.

Combination of both gives embedded applications freedom to implement communication protocols for TX and RX.

Packet structure

Packet structure consists of several fields, where some are optional and some are mandatory.

[image: Full features structure format]Full features structure format

	START: Byte with fixed value to represent start of packet

	FROM: Byte(s) from where this packet is coming from. Optional field, can be disabled with LWPKT_CFG_USE_ADDR

	TO: Byte(s) to where this packet is targeting. Optional field, can be disabled with LWPKT_CFG_USE_ADDR

	FLAGS: Variable length (unsigned 32-bit max) field for optional user flags. Optional field, can be disabled with LWPKT_CFG_USE_FLAGS

	CMD: Byte with optional command field to better align with multiple packets. Optional field, can be disabled with LWPKT_CFG_USE_CMD

	LEN: Length of data part field. This is variable multi-byte length to support data length >= 256 bytes. Always present

	DATA: Optional data field. Number of bytes is as in LEN field

	CRC: 8-bit CRC of all enabled fields except START and STOP bytes. Optional field, can be disabled with LWPKT_CFG_USE_CRC

	STOP: Byte with fixed value to represent stop of packet

Tip

If only 2 devices are communicating and are in the network, considering disabling LWPKT_CFG_USE_ADDR to improve
data bandwidth and remove unnecessary packet overhead

Data input output

LwPKT library only reads and writes to 2 ringbuffers used for read and write operations.
It is up to application to implement how buffers are actually later written for read operation and sent out on the network for write operation.

Warning

LwPKT is platform independant and requires final application to actually take care of data being read/written from/to ringbuffers and
transferred further over the network

Variable data length

Some fields implement variable data length feature, to optimize data transfer length.
Currently supported fields are:

	LEN field is always enabled

	FROM and TO fields when LWPKT_CFG_ADDR_EXTENDED feature is enabled

	FLAGS field when LWPKT_CFG_USE_FLAGS feature is enabled

Variable data length is a feature that uses minimum number of bytes to transfer data.
It uses 7 LSB bits per byte for actual data, and MSB bit to indicate if there are more bytes coming after.
For example, values between 0x00 - 0x7F are codified within single byte, while values between 0x80 - 0x3F require 2 bytes for transfer.
To transfer 32-bit variable, minimum 1-byte and maximum 5-bytes are used.

Tip

Data codification is always LSB Byte first.

Static & dynamic feature

LwPKT supports multiple instance in the same build, but there might be cases where each instance needs different protocol configuration,
such as enabled/disabled from/to fields or enabled/disabled command feature.

Some configuration features (See configuration chapter for full list of options) support static or dynamic configuration:

	static configuration is one configuration for all instances. Globally enabled or disabled feature

	dynamic configuration allows that each instance keeps its own protocol configuration.

Event management

LwPKT may operate in event mode, meaning that application receives notifications on different events:

	New packet has been received

	Timeout during packet receive

Timeout function is used when network doesn’t transmit all bytes or if data got lost in the middle of transmission.
This is to make sure that packet protocol library easily recovers to be able to receive more packets in the future

Warning

To use this feature, application must provide accurate timing in units of milliseconds
to be able to properly handle timeout function.

LwPKT example with events

 1#include <stdio.h>
 2#include "lwpkt/lwpkt.h"
 3
 4/* LwPKT data */
 5static lwpkt_t pkt;
 6static lwrb_t pkt_tx_rb, pkt_rx_rb;
 7static uint8_t pkt_tx_rb_data[64], pkt_rx_rb_data[64];
 8
 9/* Data to read and write */
 10static const char* data = "Hello World\r\n";
 11
 12/**
 13 * \brief LwPKT application callback
 14 */
 15static void
 16my_lwpkt_evt_fn(lwpkt_t* pkt, lwpkt_evt_type_t type) {
 17 switch (type) {
 18 case LWPKT_EVT_PKT: {
 19 printf("Valid packet received..\r\n");
 20
 21 /* Packet is valid */
 22 printf("Packet is valid!\r\n");
 23
 24 /* Print debug messages for packet */
 25#if LWPKT_CFG_USE_ADDR
 26 printf("Packet from: 0x%08X\r\n", (unsigned)lwpkt_get_from_addr(pkt));
 27 printf("Packet to: 0x%08X\r\n", (unsigned)lwpkt_get_to_addr(pkt));
 28#endif /* LWPKT_CFG_USE_ADDR */
 29#if LWPKT_CFG_USE_CMD
 30 printf("Packet cmd: 0x%08X\r\n", (unsigned)lwpkt_get_cmd(pkt));
 31#endif /* LWPKT_CFG_USE_CMD */
 32 printf("Packet data length: 0x%08X\r\n", (unsigned)lwpkt_get_data_len(pkt));
 33
 34 /* Do other thins... */
 35 break;
 36 }
 37 case LWPKT_EVT_TIMEOUT: {
 38 printf("Timeout detected during read operation..\r\n");
 39 break;
 40 }
 41 default: {
 42 break;
 43 }
 44 }
 45}
 46
 47/**
 48 * \brief LwPKT example code with event feature
 49 */
 50void
 51example_lwpkt_evt(void) {
 52 lwpktr_t res;
 53 uint32_t time;
 54 uint8_t b;
 55
 56 printf("---\r\nLwPKT event type..\r\n\r\n");
 57
 58 /*
 59 * Initialize both ring buffers, for TX and RX operations
 60 *
 61 * Initialize LwPKT and link buffers together
 62 */
 63 lwrb_init(&pkt_tx_rb, pkt_tx_rb_data, sizeof(pkt_tx_rb_data));
 64 lwrb_init(&pkt_rx_rb, pkt_rx_rb_data, sizeof(pkt_rx_rb_data));
 65 lwpkt_init(&pkt, &pkt_tx_rb, &pkt_rx_rb);
 66
 67#if LWPKT_CFG_USE_ADDR
 68 /* Set device address (if feature enabled) */
 69 lwpkt_set_addr(&pkt, 0x12);
 70#endif /* LWPKT_CFG_USE_ADDR */
 71
 72 /*
 73 * Write packet to the TX ringbuffer,
 74 * act as device wants to send some data
 75 */
 76 res = lwpkt_write(&pkt,
 77#if LWPKT_CFG_USE_ADDR
 78 0x11, /* End address to whom to send */
 79#endif /* LWPKT_CFG_USE_ADDR */
 80#if LWPKT_CFG_USE_FLAGS
 81 0x12345678, /* Custom flags added to the packet */
 82#endif /* LWPKT_CFG_USE_FLAGS */
 83#if LWPKT_CFG_USE_CMD
 84 0x85, /* Command type */
 85#endif /* LWPKT_CFG_USE_CMD */
 86 data, strlen(data)); /* Length of data and actual data */
 87
 88 /*
 89 * LwPKT wrote data to pkt_tx_rb ringbuffer
 90 * Now actually transmit data over your interface
 91 * (USART for example, ...)
 92 */
 93
 94 /*
 95 * For the purpose of this example, application will
 96 * fake data transmission by doing reading from TX buffer
 97 * and writing it to RX buffer
 98 */
 99 while (lwrb_read(&pkt_tx_rb, &b, 1) == 1) {
100 lwrb_write(&pkt_rx_rb, &b, 1);
101 }
102
103 /*
104 * Here we have our data in RX buffer
105 * means we received data over network interface
106 */
107
108 /* Set callback function */
109 lwpkt_set_evt_fn(&pkt, my_lwpkt_evt_fn);
110
111 /* Now call process function instead */
112 time = 100; /* Get_current_time_in_milliseconds */
113 lwpkt_process(&pkt, time);
114
115 (void)res;
116}

API reference

List of all the modules:

	LwPKT

	Configuration

LwPKT

	
group LWPKT

	Lightweight packet protocol.

Defines

	
lwpkt_get_from_addr(pkt)

	Get address from where packet was sent.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	Address

	
lwpkt_get_to_addr(pkt)

	Get address to where packet was sent.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	Address

	
lwpkt_get_data_len(pkt)

	Get length of packet.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	Number of data bytes in packet

	
lwpkt_get_data(pkt)

	Get pointer to packet data.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	Pointer to data

	
lwpkt_get_cmd(pkt)

	Get packet command data field.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	Command data field

	
lwpkt_get_flags(pkt)

	Get packet flags.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	Last received packet flags

	
lwpkt_is_for_me(pkt)

	Check if packet to field address matches device address.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	1 on success, 0 otherwise

	
lwpkt_is_broadcast(pkt)

	Check if packet was sent to all devices on network.

	Parameters

	
	pkt – [in] LwPKT instance

	Returns

	1 if broadcast, 0 otherwise

Typedefs

	
typedef void (*lwpkt_evt_fn)(struct lwpkt *pkt, lwpkt_evt_type_t evt_type)

	Event function prototype.

	Param pkt

	[in] Packet structure

	Param evt_type

	[in] Event type

	
typedef uint32_t lwpkt_addr_t

	Device address data type.

Enums

	
enum lwpkt_state_t

	Packet state enumeration.

Values:

	
enumerator LWPKT_STATE_START = 0x00

	Packet waits for start byte

	
enumerator LWPKT_STATE_FROM

	Packet waits for “packet from” byte

	
enumerator LWPKT_STATE_TO

	Packet waits for “packet to” byte

	
enumerator LWPKT_STATE_CMD

	Packet waits for “packet cmd” byte

	
enumerator LWPKT_STATE_FLAGS

	Packet waits for “packet flags” byte (custom user flags)

	
enumerator LWPKT_STATE_LEN

	Packet waits for (multiple) data length bytes

	
enumerator LWPKT_STATE_DATA

	Packet waits for actual data bytes

	
enumerator LWPKT_STATE_CRC

	Packet waits for CRC data

	
enumerator LWPKT_STATE_STOP

	Packet waits for stop byte

	
enumerator LWPKT_STATE_END

	Last entry

	
enum lwpktr_t

	Packet result enumeration.

Values:

	
enumerator lwpktOK = 0x00

	Function returns successfully

	
enumerator lwpktERR

	General error for function status

	
enumerator lwpktINPROG

	Receive is in progress

	
enumerator lwpktVALID

	packet valid and ready to be read as CRC is valid and STOP received

	
enumerator lwpktERRCRC

	CRC integrity error for the packet. Will not wait STOP byte if received

	
enumerator lwpktERRSTOP

	Packet error with STOP byte, wrong character received for STOP

	
enumerator lwpktWAITDATA

	Packet state is in start mode, waiting start byte to start receiving

	
enumerator lwpktERRMEM

	No enough memory available for write

	
enum lwpkt_evt_type_t

	List of event types.

Values:

	
enumerator LWPKT_EVT_PKT

	Valid packet ready to read

	
enumerator LWPKT_EVT_TIMEOUT

	Timeout on packat, reset event

	
enumerator LWPKT_EVT_READ

	Packet read operation. Called when read operation happens from RX buffer

	
enumerator LWPKT_EVT_WRITE

	Packet write operation. Called when write operation happens to TX buffer

	
enumerator LWPKT_EVT_PRE_WRITE

	Packet pre-write operation. Called before write operation could even start. It can be used to get exclusive mutex access to the resource

	
enumerator LWPKT_EVT_POST_WRITE

	Packet post-write operation. Called after write operation finished. It can be used to release exclusive mutex access from the resource

	
enumerator LWPKT_EVT_PRE_READ

	Packet pre-read operation. Called before read operation could even start. It can be used to get exclusive mutex access to the resource

	
enumerator LWPKT_EVT_POST_READ

	Packet post-read operation. Called after read operation finished. It can be used to release exclusive mutex access from the resource

Functions

	
lwpktr_t lwpkt_init(lwpkt_t *pkt, lwrb_t *tx_rb, lwrb_t *rx_rb)

	Initialize packet instance and set device address.

	Parameters

	
	pkt – [in] Packet instance

	tx_rb – [in] TX LwRB instance for data write

	rx_rb – [in] RX LwRB instance for data read

	Returns

	lwpktOK on success, member of lwpktr_t otherwise

	
lwpktr_t lwpkt_set_addr(lwpkt_t *pkt, lwpkt_addr_t addr)

	Set device address for packet instance.

	Parameters

	
	pkt – [in] Packet instance

	addr – [in] New device address

	Returns

	lwpktOK on success, member of lwpktr_t otherwise

	
lwpktr_t lwpkt_read(lwpkt_t *pkt)

	Read raw data from RX ring buffer, parse the characters and try to construct the receive packet.

	Parameters

	pkt – [in] Packet instance

	Returns

	lwpktVALID when packet valid, member of lwpktr_t otherwise

	
lwpktr_t lwpkt_write(lwpkt_t *pkt, lwpkt_addr_t to, uint32_t flags, uint8_t cmd, const void *data, size_t len)

	Write packet data to TX ringbuffer.

	Parameters

	
	pkt – [in] Packet instance

	to – [in] End device address

	cmd – [in] Packet command

	data – [in] Pointer to input data. Set to NULL if not used

	len – [in] Length of input data. Must be set to 0 if data == NULL

	Returns

	lwpktOK on success, member of lwpktr_t otherwise

	
lwpktr_t lwpkt_reset(lwpkt_t *pkt)

	Reset packet state.

	Parameters

	pkt – [in] Packet instance

	Returns

	lwpktOK on success, member of lwpktr_t otherwise

	
lwpktr_t lwpkt_process(lwpkt_t *pkt, uint32_t time)

	Process packet instance and read new data.

	Parameters

	
	pkt – [in] Packet instance

	time – [in] Current time in units of milliseconds

	Returns

	lwpktOK if processing OK, member of lwpktr_t otherwise

	
lwpktr_t lwpkt_set_evt_fn(lwpkt_t *pkt, lwpkt_evt_fn evt_fn)

	Set event function for packet events.

	Parameters

	
	pkt – [in] Packet structure

	evt_fn – [in] Function pointer for events

	Returns

	lwpktOK on success, member of lwpktr_t otherwise

	
void lwpkt_set_crc_enabled(lwpkt_t *pkt, uint8_t enable)

	Set CRC mode enabled.

Note

This function is only available, if LWPKT_CFG_USE_CRC is 2

	Parameters

	
	pkt – LwPKT instance

	enable – 1 to enable, 0 otherwise

	
void lwpkt_set_addr_enabled(lwpkt_t *pkt, uint8_t enable)

	Enable addressing in the packet.

Note

This function is only available, if LWPKT_CFG_USE_ADDR is 2

	Parameters

	
	pkt – LwPKT instance

	enable – 1 to enable, 0 otherwise

	
void lwpkt_set_addr_extended_enabled(lwpkt_t *pkt, uint8_t enable)

	Enable extended addressing in the packet.

Note

This function is only available, if LWPKT_CFG_ADDR_EXTENDED is 2

	Parameters

	
	pkt – LwPKT instance

	enable – 1 to enable, 0 otherwise

	
void lwpkt_set_cmd_enabled(lwpkt_t *pkt, uint8_t enable)

	Enable CMD mode in the packet.

Note

This function is only available, if LWPKT_CFG_USE_CMD is 2

	Parameters

	
	pkt – LwPKT instance

	enable – 1 to enable, 0 otherwise

	
void lwpkt_set_flags_enabled(lwpkt_t *pkt, uint8_t enable)

	Enable FLAGS mode in the packet.

Note

This function is only available, if LWPKT_CFG_USE_FLAGS is 2

	Parameters

	
	pkt – LwPKT instance

	enable – 1 to enable, 0 otherwise

	
struct lwpkt_crc_t

	
#include <lwpkt.h>

CRC structure for packet.

Public Members

	
uint8_t crc

	Current CRC value

	
struct lwpkt_t

	
#include <lwpkt.h>

Packet structure.

Public Members

	
lwpkt_addr_t addr

	Current device address

	
uint8_t data[LWPKT_CFG_MAX_DATA_LEN]

	Memory to write received data

	
lwrb_t *tx_rb

	TX ringbuffer

	
lwrb_t *rx_rb

	RX ringbuffer

	
uint32_t last_rx_time

	Last RX time in units of milliseconds

	
lwpkt_evt_fn evt_fn

	Global event function for read and write operation

	
uint8_t flags

	List of flags

	
lwpkt_state_t state

	Actual packet state machine

	
lwpkt_crc_t crc

	Packet CRC byte

	
lwpkt_addr_t from

	Device address packet is coming from

	
lwpkt_addr_t to

	Device address packet is intended for

	
uint32_t flags

	Custom flags

	
uint8_t cmd

	Command packet

	
size_t len

	Number of bytes to receive

	
size_t index

	General index variable for multi-byte parts of packet

	
struct lwpkt_t::[anonymous] m

	Module that is periodically reset for next packet

Configuration

This is the default configuration of the middleware.
When any of the settings shall be modified, it shall be done in dedicated application config lwpkt_opts.h file.

Note

Check Getting started for guidelines on how to create and use configuration file.

	
group LWPKT_OPT

	Default configuration setup.

Defines

	
LWPKT_MEMSET(dst, val, len)

	Memory set function.

Note

Function footprint is the same as memset

	
LWPKT_MEMCPY(dst, src, len)

	Memory copy function.

Note

Function footprint is the same as memcpy

	
LWPKT_CFG_MAX_DATA_LEN

	Maximum length of data part of the packet in units of bytes.

	
LWPKT_CFG_ADDR_BROADCAST

	Address identifying broadcast message to all devices.

	
LWPKT_CFG_USE_ADDR

	Enables 1 or disables 0 from and to fields in the protocol.

This features is useful if communication is between 2 devices exclusively, without addressing requirements

Configuration options:
	0: Feature is globally disabled in the library

	1: Feature is globally enabled in the library

	2: Feature is dynamically enabled/disabled in the library, according to the LwPKT object instance. If set to 2, feature is by default enabled, but it can be disabled with appropriate API function.

	
LWPKT_CFG_ADDR_EXTENDED

	Enables 1 or disables 0 extended address length.

When enabled, multi-byte addresses are supported with MSB codification. Maximum address is limited to 32-bits.

When disabled, simple 8-bit address is fixed with single byte.

Feature is disabled by default to keep architecture compatibility

Configuration options:
	0: Feature is globally disabled in the library

	1: Feature is globally enabled in the library

	2: Feature is dynamically enabled/disabled in the library, according to the LwPKT object instance. If set to 2, feature is by default enabled, but it can be disabled with appropriate API function.

	
LWPKT_CFG_USE_CMD

	Enables 1 or disables 0 cmd field in the protocol.

When disabled, command part is not used

Configuration options:
	0: Feature is globally disabled in the library

	1: Feature is globally enabled in the library

	2: Feature is dynamically enabled/disabled in the library, according to the LwPKT object instance. If set to 2, feature is by default enabled, but it can be disabled with appropriate API function.

	
LWPKT_CFG_USE_CRC

	Enables 1 or disables 0 CRC check in the protocol.

Configuration options:
	0: Feature is globally disabled in the library

	1: Feature is globally enabled in the library

	2: Feature is dynamically enabled/disabled in the library, according to the LwPKT object instance. If set to 2, feature is by default enabled, but it can be disabled with appropriate API function.

	
LWPKT_CFG_USE_FLAGS

	Enables 1 or disables 0 flags field in the protocol.

When enabled, multi-byte addresses are supported with MSB codification. Maximum address is limited to 32-bits.

Feature is disabled by default to keep architecture compatibility

Configuration options:
	0: Feature is globally disabled in the library

	1: Feature is globally enabled in the library

	2: Feature is dynamically enabled/disabled in the library, according to the LwPKT object instance. If set to 2, feature is by default enabled, but it can be disabled with appropriate API function.

	
LWPKT_CFG_PROCESS_INPROG_TIMEOUT

	Defines timeout time before packet is considered as not valid when too long time in data-read mode.

Used with lwpkt_process function

	
LWPKT_CFG_USE_EVT

	Enables 1 or disables 0 event functions for read and write operations.

Changelog

Changelog

Develop

v1.3.0

- Split CMakeLists.txt files between library and executable
- Change license year to 2022
- Add `.clang-format` draft
- Change license year to 2023
- Add memory overflow check
- Add more events for pre and post write & read operations
- Add more recent version of LwRB
- Fix compilation error if CRC mode is disabled
- Add support for dynamic configuration, to support multiple LwPKT instances in one project
- Add flags support to allow customer user flags in packet

v1.2.0

- Added support for events on packet ready, read or write operation
- Add `library.json` for platform.io

v1.1.0

- Added support for variable length for address fields

v1.0.1

- Added sphinx documentation to the repository
- Improved code documentation for doxygen compliancy

v1.0.0

- First stable release

Authors

List of authors and contributors to the library

Tilen Majerle <tilen.majerle@gmail.com>
Tilen Majerle <tilen@majerle.eu>

Index

 L

L

 	
 	lwpkt_addr_t (C++ type)

 	LWPKT_CFG_ADDR_BROADCAST (C macro)

 	LWPKT_CFG_ADDR_EXTENDED (C macro)

 	LWPKT_CFG_MAX_DATA_LEN (C macro)

 	LWPKT_CFG_PROCESS_INPROG_TIMEOUT (C macro)

 	LWPKT_CFG_USE_ADDR (C macro)

 	LWPKT_CFG_USE_CMD (C macro)

 	LWPKT_CFG_USE_CRC (C macro)

 	LWPKT_CFG_USE_EVT (C macro)

 	LWPKT_CFG_USE_FLAGS (C macro)

 	lwpkt_crc_t (C++ struct)

 	lwpkt_crc_t::crc (C++ member)

 	lwpkt_evt_fn (C++ type)

 	lwpkt_evt_type_t (C++ enum)

 	lwpkt_evt_type_t::LWPKT_EVT_PKT (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_POST_READ (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_POST_WRITE (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_PRE_READ (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_PRE_WRITE (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_READ (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_TIMEOUT (C++ enumerator)

 	lwpkt_evt_type_t::LWPKT_EVT_WRITE (C++ enumerator)

 	lwpkt_get_cmd (C macro)

 	lwpkt_get_data (C macro)

 	lwpkt_get_data_len (C macro)

 	lwpkt_get_flags (C macro)

 	lwpkt_get_from_addr (C macro)

 	lwpkt_get_to_addr (C macro)

 	lwpkt_init (C++ function)

 	lwpkt_is_broadcast (C macro)

 	lwpkt_is_for_me (C macro)

 	LWPKT_MEMCPY (C macro)

 	LWPKT_MEMSET (C macro)

 	lwpkt_process (C++ function)

 	lwpkt_read (C++ function)

 	lwpkt_reset (C++ function)

 	lwpkt_set_addr (C++ function)

 	lwpkt_set_addr_enabled (C++ function)

 	lwpkt_set_addr_extended_enabled (C++ function)

 	lwpkt_set_cmd_enabled (C++ function)

 	
 	lwpkt_set_crc_enabled (C++ function)

 	lwpkt_set_evt_fn (C++ function)

 	lwpkt_set_flags_enabled (C++ function)

 	lwpkt_state_t (C++ enum)

 	lwpkt_state_t::LWPKT_STATE_CMD (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_CRC (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_DATA (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_END (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_FLAGS (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_FROM (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_LEN (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_START (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_STOP (C++ enumerator)

 	lwpkt_state_t::LWPKT_STATE_TO (C++ enumerator)

 	lwpkt_t (C++ struct)

 	lwpkt_t::addr (C++ member)

 	lwpkt_t::cmd (C++ member)

 	lwpkt_t::crc (C++ member)

 	lwpkt_t::data (C++ member)

 	lwpkt_t::evt_fn (C++ member)

 	lwpkt_t::flags (C++ member), [1]

 	lwpkt_t::from (C++ member)

 	lwpkt_t::index (C++ member)

 	lwpkt_t::last_rx_time (C++ member)

 	lwpkt_t::len (C++ member)

 	lwpkt_t::m (C++ member)

 	lwpkt_t::rx_rb (C++ member)

 	lwpkt_t::state (C++ member)

 	lwpkt_t::to (C++ member)

 	lwpkt_t::tx_rb (C++ member)

 	lwpkt_write (C++ function)

 	lwpktr_t (C++ enum)

 	lwpktr_t::lwpktERR (C++ enumerator)

 	lwpktr_t::lwpktERRCRC (C++ enumerator)

 	lwpktr_t::lwpktERRMEM (C++ enumerator)

 	lwpktr_t::lwpktERRSTOP (C++ enumerator)

 	lwpktr_t::lwpktINPROG (C++ enumerator)

 	lwpktr_t::lwpktOK (C++ enumerator)

 	lwpktr_t::lwpktVALID (C++ enumerator)

 	lwpktr_t::lwpktWAITDATA (C++ enumerator)

 _static/dark-light/moon.png

_static/dark-light/sun.png

_static/minus.png

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 LwPKT documentation

 		
 Getting started

 		
 Download library

 		
 Download from releases

 		
 Clone from Github

 		
 Add library to project

 		
 Configuration file

 		
 Minimal example code

 		
 User manual

 		
 Packet structure

 		
 Data input output

 		
 Variable data length

 		
 Static & dynamic feature

 		
 Event management

 		
 API reference

 		
 LwPKT

 		
 Configuration

 		
 Changelog

 		
 Authors

_static/images/logo_tm.png

_static/images/logo_tm_full.png
TILEN
MAJERLE

