
LwRB

Tilen MAJERLE

Mar 23, 2024

CONTENTS

1 Features 3

2 Requirements 5

3 Contribute 7

4 Example code 9

5 License 11

6 Table of contents 13
6.1 Getting started . 13
6.2 User manual . 15
6.3 Tips & tricks . 25
6.4 API reference . 27
6.5 Changelog . 33
6.6 Authors . 35

Index 37

i

ii

LwRB

Welcome to the documentation for version latest-develop.

LwRB is a generic FIFO (First In; First Out) buffer library optimized for embedded systems.

Download library Getting started Open Github Donate

CONTENTS 1

https://github.com/MaJerle/lwrb
https://paypal.me/tilz0R

LwRB

2 CONTENTS

CHAPTER

ONE

FEATURES

• Written in C (C11), compatible with size_t for size data types

• Platform independent, no architecture specific code

• FIFO (First In First Out) buffer implementation

• No dynamic memory allocation, data is static array

• Uses optimized memory copy instead of loops to read/write data from/to memory

• Thread safe when used as pipe with single write and single read entries

• Interrupt safe when used as pipe with single write and single read entries

• Suitable for DMA transfers from and to memory with zero-copy overhead between buffer and application memory

• Supports data peek, skip for read and advance for write

• Implements support for event notifications

• User friendly MIT license

3

LwRB

4 Chapter 1. Features

CHAPTER

TWO

REQUIREMENTS

• C compiler

• Less than 1kB of non-volatile memory

5

LwRB

6 Chapter 2. Requirements

CHAPTER

THREE

CONTRIBUTE

Fresh contributions are always welcome. Simple instructions to proceed:

1. Fork Github repository

2. Respect C style & coding rules used by the library

3. Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

1. Report a bug

2. Ask for a feature request

7

https://github.com/MaJerle/c-code-style

LwRB

8 Chapter 3. Contribute

CHAPTER

FOUR

EXAMPLE CODE

Minimalistic example code to read and write data to buffer

Listing 1: Example code

1 /* Declare rb instance & raw data */
2 lwrb_t buff;
3 uint8_t buff_data[8];
4

5 /* Application variables */
6 uint8_t data[2];
7 size_t len;
8

9 /* Application code ... */
10 lwrb_init(&buff, buff_data, sizeof(buff_data)); /* Initialize buffer */
11

12 /* Write 4 bytes of data */
13 lwrb_write(&buff, "0123", 4);
14

15 /* Try to read buffer */
16 /* len holds number of bytes read */
17 /* Read until len == 0, when buffer is empty */
18 while ((len = lwrb_read(&buff, data, sizeof(data))) > 0) {
19 printf("Successfully read %d bytes\r\n", (int)len);
20 }

9

LwRB

10 Chapter 4. Example code

CHAPTER

FIVE

LICENSE

MIT License

Copyright (c) 2024 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

11

LwRB

12 Chapter 5. License

CHAPTER

SIX

TABLE OF CONTENTS

6.1 Getting started

Getting started may be the most challenging part of every new library. This guide is describing how to start with the
library quickly and effectively

6.1.1 Download library

Library is primarly hosted on Github.

You can get it by:

• Downloading latest release from releases area on Github

• Cloning main branch for latest stable version

• Cloning develop branch for latest development

Download from releases

All releases are available on Github releases area.

Clone from Github

First-time clone

This is used when you do not have yet local copy on your machine.

• Make sure git is installed.

• Open console and navigate to path in the system to clone repository to. Use command cd your_path

• Clone repository with one of available options below

– Run git clone --recurse-submodules https://github.com/MaJerle/lwrb command to clone
entire repository, including submodules

– Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/
lwrb to clone development branch, including submodules

– Run git clone --recurse-submodules --branch main https://github.com/MaJerle/lwrb
to clone latest stable branch, including submodules

• Navigate to examples directory and run favourite example

13

https://github.com/MaJerle/lwrb
https://github.com/MaJerle/lwrb/releases
https://github.com/MaJerle/lwrb/releases

LwRB

Update cloned to latest version

• Open console and navigate to path in the system where your repository is located. Use command cd your_path

• Run git pull origin main command to get latest changes on main branch

• Run git pull origin develop command to get latest changes on develop branch

• Run git submodule update --init --remote to update submodules to latest version

Note: This is preferred option to use when you want to evaluate library and run prepared examples. Repository
consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root
repository.

6.1.2 Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page. Next
step is to add the library to the project, by means of source files to compiler inputs and header files in search path.

CMake is the main supported build system. Package comes with the CMakeLists.txt and library.cmake files,
both located in the lwrb directory:

• CMakeLists.txt: Is a wrapper and only includes library.cmake file. It is used if target application uses
add_subdirectory and then uses target_link_libraries to include the library in the project

• library.cmake: It is a fully configured set of variables. User must use include(path/to/library.cmake)
to include the library and must manually add files/includes to the final target

Tip: Open library.cmake file and manually analyze all the possible variables you can set for full functionality.

If you do not use the CMake, you can do the following:

• Copy lwrb folder to your project, it contains library files

• Add lwrb/src/include folder to include path of your toolchain. This is where C/C++ compiler can find the
files during compilation process. Usually using -I flag

• Add source files from lwrb/src/ folder to toolchain build. These files are built by C/C++ compiler. CMake
configuration comes with the library, allows users to include library in the project as subdirectory and library.y

• Build the project

6.1.3 Minimal example code

To verify proper library setup, minimal example has been prepared. Run it in your main application file to verify its
proper execution

Listing 1: Absolute minimum example

1 #include "lwrb/lwrb.h"
2

3 /* Declare rb instance & raw data */
4 lwrb_t buff;
5 uint8_t buff_data[8];

(continues on next page)

14 Chapter 6. Table of contents

LwRB

(continued from previous page)

6

7 /* Application variables */
8 uint8_t data[2]; /* Application working data */
9

10 /* Application code ... */
11 lwrb_init(&buff, buff_data, sizeof(buff_data)); /* Initialize buffer */
12

13 /* Write 4 bytes of data */
14 lwrb_write(&buff, "0123", 4);
15

16 /* Print number of bytes in buffer */
17 printf("Bytes in buffer: %d\r\n", (int)lwrb_get_full(&buff));
18

19 /* Will print "4" */

6.2 User manual

6.2.1 How it works

This section shows different buffer corner cases and provides basic understanding how data are managed internally.

Fig. 1: Different buffer corner cases

Let’s start with reference of abbreviations in picture:

• R represents Read pointer. Read on read/write operations. Modified on read operation only

• W represents Write pointer. Read on read/write operations. Modified on write operation only

• S represents Size of buffer. Used on all operations, never modified (atomic value)

– Valid number of W and R pointers are between 0 and S - 1

• Buffer size is S = 8, thus valid number range for W and R pointers is 0 - 7.

– R and W numbers overflow at S, thus valid range is always 0, 1, 2, 3, ..., S - 2, S - 1, 0, 1,
2, 3, ..., S - 2, S - 1, 0, ...

– Example S = 4: 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, ...

• Maximal number of bytes buffer can hold is always S - 1, thus example buffer can hold up to 7 bytes

• R and W pointers always point to the next read/write operation

• When W == R, buffer is considered empty.

• When W == R - 1, buffer is considered full.

– W == R - 1 is valid only if W and R overflow at buffer size S.

– Always add S to calculated number and then use modulus S to get final value

Note: Example 1, add 2 numbers: 2 + 3 = (3 + 2 + S) % S = (3 + 2 + 4) % 4 = (5 + 4) % 4 = 1

Example 2, subtract 2 numbers: 2 - 3 = (2 - 3 + S) % S = (2 - 3 + 4) % 4 = (-1 + 4) % 4 = 3

6.2. User manual 15

LwRB

Fig. 2: Different buffer corner cases

Different image cases:

• Case A: Buffer is empty as W == R = 0 == 0

• Case B: Buffer holds W - R = 4 - 0 = 4 bytes as W > R

• Case C: Buffer is full as W == R - 1 or 7 == 0 - 1 or 7 = (0 - 1 + S) % S = (0 - 1 + 8) % 8 =
(-1 + 8) % 8 = 7

– R and W can hold S different values, from 0 to S - 1, that is modulus of S

– Buffer holds W - R = 7 - 0 = 7 bytes as W > R

• Case D: Buffer holds S - (R - W) = 8 - (5 - 3) = 6 bytes as R > W

• Case E: Buffer is full as W == R - 1 (4 = 5 - 1) and holds S - (R - W) = 8 - (5 - 4)) = 7 bytes

6.2.2 Events

When using LwRB in the application, it may be useful to get notification on different events, such as info when some-
thing has been written or read to/from buffer.

Library has support for events that get called each time there has been a modification in the buffer data, that means on
every read or write operation.

Some use cases:

• Notify application layer that LwRB operation has been executed and send debug message

• Unlock semaphore when sufficient amount of bytes have been written/read from/to buffer when application uses
operating system

• Write notification to message queue at operating system level to wakeup another task

Note: Every operation that modified read or write internal pointers, is considered as read or write operation. An
exception is reset event that sets both internal pointers to 0

Listing 2: Example code for events

1 /**
2 * \brief Buffer event function
3 */
4 void
5 my_buff_evt_fn(lwrb_t* buff, lwrb_evt_type_t type, size_t len) {
6 switch (type) {
7 case LWRB_EVT_RESET:
8 printf("[EVT] Buffer reset event!\r\n");
9 break;

10 case LWRB_EVT_READ:
11 printf("[EVT] Buffer read event: %d byte(s)!\r\n", (int)len);
12 break;
13 case LWRB_EVT_WRITE:
14 printf("[EVT] Buffer write event: %d byte(s)!\r\n", (int)len);
15 break;

(continues on next page)

16 Chapter 6. Table of contents

LwRB

(continued from previous page)

16 default: break;
17 }
18 }
19

20 /* Later in the code... */
21 lwrb_t buff;
22 uint8_t buff_data[8];
23

24 /* Init buffer and set event function */
25 lwrb_init(&buff, buff_data, sizeof(buff_data));
26 lwrb_set_evt_fn(&buff, my_buff_evt_fn);

6.2.3 DMA for embedded systems

One of the key features of LwRB library is that it can be seamlessly integrated with DMA controllers on embedded
systems.

Note: DMA stands for Direct Memory Access controller and is usually used to off-load CPU. More about DMA is
available on Wikipedia.

DMA controllers normally use source and destination memory addresses to transfer data in-between. This features,
together with LwRB, allows seamless integration and zero-copy of application data at interrupts after DMA transfer
has been completed. Some manual work is necessary to be handled, but this is very minor in comparison of writing
byte-by-byte to buffer at (for example) each received character.

Below are 2 common use cases:

• DMA transfers data from LwRB memory to (usually) some hardware IP

• DMA transfers data from hardware IP to memory

Zero-copy data from LwRB memory

This describes how to pass LwRB output memory address as pointer to DMA (or any other processing function). After
data is successfully processed, application can skip processed data and mark buffer as free for new data being written
to it.

Fig. 3: Data transfer from memory to hardware IP

• Case A: Initial state, buffer is full and holds 7 bytes

• Case B: State after skipping R pointer for 3 bytes. Buffer now holds 4 remaining bytes

• Case C: Buffer is empty, no more memory available for read operation

Code example:

Listing 3: Skip buffer data after usage

1 #include "lwrb/lwrb.h"
2

3 /* Declare rb instance & raw data */
(continues on next page)

6.2. User manual 17

https://en.wikipedia.org/wiki/Direct_memory_access

LwRB

(continued from previous page)

4 lwrb_t buff;
5 uint8_t buff_data[8];
6

7 size_t len;
8 uint8_t* data;
9

10 /* Initialize buffer, use buff_data as data array */
11 lwrb_init(&buff, buff_data, sizeof(buff_data));
12

13 /* Use write, read operations, process data */
14 /* ... */
15

16 /* IMAGE PART A */
17

18 /* At this stage, we have buffer as on image above */
19 /* R = 5, W = 4, buffer is considered full */
20

21 /* Get length of linear memory at read pointer */
22 /* Function returns 3 as we can read 3 bytes from buffer in sequence */
23 /* When function returns 0, there is no memory available in the buffer for read anymore␣

→˓*/
24 if ((len = lwrb_get_linear_block_read_length(&buff)) > 0) {
25 /* Get pointer to first element in linear block at read address */
26 /* Function returns &buff_data[5] */
27 data = lwrb_get_linear_block_read_address(&buff);
28

29 /* Send data via DMA and wait to finish (for sake of example) */
30 send_data(data, len);
31

32 /* Now skip sent bytes from buffer = move read pointer */
33 lwrb_skip(&buff, len);
34

35 /* Now R points to top of buffer, R = 0 */
36 /* At this point, we are at image part B */
37 }
38

39 /* IMAGE PART B */
40

41 /* Get length of linear memory at read pointer */
42 /* Function returns 4 as we can read 4 bytes from buffer in sequence */
43 /* When function returns 0, there is no memory available in the buffer for read anymore␣

→˓*/
44 if ((len = lwrb_get_linear_block_read_length(&buff)) > 0) {
45 /* Get pointer to first element in linear block at read address */
46 /* Function returns &buff_data[0] */
47 data = lwrb_get_linear_block_read_address(&buff);
48

49 /* Send data via DMA and wait to finish (for sake of example) */
50 send_data(data, len);
51

52 /* Now skip sent bytes from buffer = move read pointer */
53 /* Read pointer is moved for len bytes */

(continues on next page)

18 Chapter 6. Table of contents

LwRB

(continued from previous page)

54 lwrb_skip(&buff, len);
55

56 /* Now R points to 4, that is R == W and buffer is now empty */
57 /* At this point, we are at image part C */
58 }
59

60 /* IMAGE PART C */
61

62 /* Buffer is considered empty as R == W */

Part A on image clearly shows that not all data bytes are linked in single contiguous block of memory. To send all bytes
from lwrb, it might be necessary to repeat procedure multiple times

Listing 4: Skip buffer data for non-contiguous block

1 /* Initialization part skipped */
2

3 /* Get length of linear memory at read pointer */
4 /* When function returns 0, there is no memory
5 available in the buffer for read anymore */
6 while ((len = lwrb_get_linear_block_read_length(&buff)) > 0) {
7 /* Get pointer to first element in linear block at read address */
8 data = lwrb_get_linear_block_read_address(&buff);
9

10 /* If max length needs to be considered */
11 /* simply decrease it and use smaller len on skip function */
12 if (len > max_len) {
13 len = max_len;
14 }
15

16 /* Send data via DMA and wait to finish (for sake of example) */
17 send_data(data, len);
18

19 /* Now skip sent bytes from buffer = move read pointer */
20 lwrb_skip(&buff, len);
21 }

Zero-copy data to LwRB memory

Similar to reading data from buffer with zero-copy overhead, it is possible to write to lwrb with zero-copy overhead
too. Only difference is that application now needs pointer to write memory address and length of maximal number
of bytes to directly copy into buffer. After successful processing, buffer advance operation is necessary to manually
increase write pointer and to increase number of bytes in buffer.

• Case A: Initial state, buffer is empty as R == W

– Based on W pointer position, application could write 4 bytes to contiguous block of memory

• Case B: State after advancing W pointer for 4 bytes. Buffer now holds 4 bytes and has 3 remaining available

• Case C: Buffer is full, no more free memory available for write operation

Code example:

6.2. User manual 19

LwRB

Listing 5: Advance buffer pointer for manually written bytes

1 /* Declare rb instance & raw data */
2 lwrb_t buff;
3 uint8_t buff_data[8];
4

5 size_t len;
6 uint8_t* data;
7

8 /* Initialize buffer, use buff_data as data array */
9 lwrb_init(&buff, buff_data, sizeof(buff_data));

10

11 /* Use write, read operations, process data */
12 /* ... */
13

14 /* IMAGE PART A */
15

16 /* At this stage, we have buffer as on image above */
17 /* R = 4, W = 4, buffer is considered empty */
18

19 /* Get length of linear memory at write pointer */
20 /* Function returns 4 as we can write 4 bytes to buffer in sequence */
21 /* When function returns 0, there is no memory available in the buffer for write anymore␣

→˓*/
22 if ((len = lwrb_get_linear_block_write_length(&buff)) > 0) {
23 /* Get pointer to first element in linear block at write address */
24 /* Function returns &buff_data[4] */
25 data = lwrb_get_linear_block_write_address(&buff);
26

27 /* Receive data via DMA and wait to finish (for sake of example) */
28 /* Any other hardware may directly write to data array */
29 /* Data array has len bytes length */
30 /* Or use memcpy(data, my_array, len); */
31 receive_data(data, len);
32

33 /* Now advance buffer for written bytes to buffer = move write pointer */
34 /* Write pointer is moved for len bytes */
35 lwrb_advance(&buff, len);
36

37 /* Now W points to top of buffer, W = 0 */
38 /* At this point, we are at image part B */
39 }
40

41 /* IMAGE PART B */
42

43 /* Get length of linear memory at write pointer */
44 /* Function returns 3 as we can write 3 bytes to buffer in sequence */
45 /* When function returns 0, there is no memory available in the buffer for write anymore␣

→˓*/
46 if ((len = lwrb_get_linear_block_write_length(&buff)) > 0) {
47 /* Get pointer to first element in linear block at write address */
48 /* Function returns &buff_data[0] */

(continues on next page)

20 Chapter 6. Table of contents

LwRB

(continued from previous page)

49 data = lwrb_get_linear_block_write_address(&buff);
50

51 /* Receive data via DMA and wait to finish (for sake of example) */
52 /* Any other hardware may directly write to data array */
53 /* Data array has len bytes length */
54 /* Or use memcpy(data, my_array, len); */
55 receive_data(data, len);
56

57 /* Now advance buffer for written bytes to buffer = move write pointer */
58 /* Write pointer is moved for len bytes */
59 lwrb_advance(&buff, len);
60

61 /* Now W points to 3, R points to 4, that is R == W + 1 and buffer is now full */
62 /* At this point, we are at image part C */
63 }
64

65 /* IMAGE PART C */
66

67 /* Buffer is considered full as R == W + 1 */

Example for DMA transfer from memory

This is an example showing pseudo code for implementing data transfer using DMA with zero-copy overhead. For read
operation purposes, application gets direct access to LwRB read pointer and length of contiguous memory.

It is assumed that after DMA transfer completes, interrupt is generated (embedded system) and buffer is skipped in the
interrupt.

Note: Buffer skip operation is used to mark sent data as processed and to free memory for new writes to buffer

Listing 6: DMA usage with buffer

1 /* Declare rb instance & raw data */
2 lwrb_t buff;
3 uint8_t buff_data[8];
4

5 /* Working data length */
6 volatile size_t len;
7

8 /* Send data function */
9 void send_data(void);

10

11 int
12 main(void) {
13 /* Initialize buffer */
14 lwrb_init(&buff, buff_data, sizeof(buff_data));
15

16 /* Write 4 bytes of data */
17 lwrb_write(&buff, "0123", 4);
18

(continues on next page)

6.2. User manual 21

LwRB

(continued from previous page)

19 /* Send data over DMA */
20 send_data();
21

22 while (1);
23 }
24

25 /* Send data over DMA */
26 void
27 send_data(void) {
28 /* If len > 0, DMA transfer is on-going */
29 if (len > 0) {
30 return;
31 }
32

33 /* Get maximal length of buffer to read data as linear memory */
34 len = lwrb_get_linear_block_read_length(&buff);
35 if (len > 0) {
36 /* Get pointer to read memory */
37 uint8_t* data = lwrb_get_linear_block_read_address(&buff);
38

39 /* Start DMA transfer */
40 start_dma_transfer(data, len);
41 }
42

43 /* Function does not wait for transfer to finish */
44 }
45

46 /* Interrupt handler */
47 /* Called on DMA transfer finish */
48 void
49 DMA_Interrupt_handler(void) {
50 /* Transfer finished */
51 if (len > 0) {
52 /* Now skip the data (move read pointer) as they were successfully transferred␣

→˓over DMA */
53 lwrb_skip(&buff, len);
54

55 /* Reset length = DMA is not active */
56 len = 0;
57

58 /* Try to send more */
59 send_data();
60 }
61 }

Tip: Check STM32 UART DMA TX RX Github repository for use cases.

22 Chapter 6. Table of contents

https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx

LwRB

6.2.4 Thread safety

Ring buffers are effectively used in embedded systems with or without operating systems. Common problem most of
implementations have, is linked to multi-thread environment (when using OS) or reading/writing from/to interrupts.
Question becomes What happens if I write to buffer while another thread is reading from it?

One of the main requirements (beside being lightweight) of LwRB was to allow read-while-write or write-while-read
operations. This is achieved only when there is single write entry point and single read exit point.

Fig. 4: Write and read operation with single entry and exit points

Often called and used as pipe to write (for example) raw data to the buffer allowing another task to process the data
from another thread.

Note: No race-condition is introduced when application uses LwRB with single write entry and single read exit point.
LwRB uses C11 standard stdatomic.h library to ensure read and write operations are race-free for any platform
supporting C11 and its respected atomic library.

Thread (or interrupt) safety, with one entry and one exit points, is achieved by storing actual buffer read and write pointer
variables to the local ones before performing any calculation. Therefore multiple conditional checks are guaranteed to
be performed on the same local variables, even if actual buffer pointers get modified.

• Read pointer could get changed by interrupt or another thread when application tries to write to buffer

• Write pointer could get changed by interrupt or another thread when application ties to read from buffer

Note: Even single entry and single exit points may introduce race condition, especially on smaller system, such as
8-bit or 16-bit system, or in general, where arbitrary type (normaly size_t) is sizeof(type) > architecture_size. This is
solved by C11 atomic library, that ensures atomic reads and writes to key structure members.

Thread safety gets completely broken when application does one of the following:

• Uses multiple write entry points to the single LwRB instance

• Uses multiple read exit points to the single LwRB instance

• Uses multiple read/write exit/entry points to the same LwRB instance

Fig. 5: Write operation to same LwRB instance from 2 threads. Write protection is necessary to ensure thread safety.

Fig. 6: Write operation to same LwRB instance from main loop and interrupt context. Write protection is necessary to
ensure thread safety.

Above use cases are examples when thread safety gets broken. Application must ensure exclusive access only to the
part in dashed-red rectangle.

Listing 7: Thread safety example

1 /* Declare variables */
2 lwrb_t rb;
3

4 /* 2 mutexes, one for write operations,
(continues on next page)

6.2. User manual 23

LwRB

Fig. 7: Read operation from same LwRB instance from 2 threads. Read protection is necessary to ensure thread safety.

Fig. 8: Read and write operations are executed from multiple threads. Both, read and write, operations require exclusive
access.

(continued from previous page)

5 one for read operations */
6 mutex_t m_w, m_r;
7

8 /* 4 threads below, 2 for write, 2 for read */
9 void

10 thread_write_1(void* arg) {
11 /* Use write mutex */
12 while (1) {
13 mutex_get(&m_w);
14 lwrb_write(&rb, ...);
15 mutex_give(&m_w);
16 }
17 }
18

19 void
20 thread_write_2(void* arg) {
21 /* Use write mutex */
22 while (1) {
23 mutex_get(&m_w);
24 lwrb_write(&rb, ...);
25 mutex_give(&m_w);
26 }
27 }
28

29 void
30 thread_read_1(void* arg) {
31 /* Use read mutex */
32 while (1) {
33 mutex_get(&m_r);
34 lwrb_read(&rb, ...);
35 mutex_give(&m_r);
36 }
37 }
38

39 void
40 thread_read_2(void* arg) {
41 /* Use read mutex */
42 while (1) {
43 mutex_get(&m_r);
44 lwrb_read(&rb, ...);
45 mutex_give(&m_r);
46 }
47 }

Read and write operations can be used simultaneously hence it is perfectly valid if access is granted to read operation
while write operation from one thread takes place.

24 Chapter 6. Table of contents

LwRB

Note: 2 different mutexes are used for read and write due to the implementation, allowing application to use buffer
in read-while-write and write-while-read mode. Mutexes are used to prevent write-while-write and read-while-read
operations respectively

Tip: For multi-entry-point-single-exit-point use case, read mutex is not necessary. For single-entry-point-multi-exit-
point use case, write mutex is not necessary.

Tip: Functions considered as read operation are read, skip, peek and linear read. Functions considered as write
operation are write, advance and linear write.

6.2.5 Atomicity

While thread-safety concepts are very important, depending on the system architecture and variable sizes (and hardware
cache), application must also ensure that all the writes and reads to the internal variables are executed in atomic manner.

Especially critical case is when read/write from/to variable isn’t 1 cycle on specific architecture (for instance 32-bit
variable on 8-bit CPU).

Library (in its default configuration) uses stdatomic feature from C11 language, and relies on a compiler to properly
generate necessary calls to make sure, all reads and writes are atomic.

Note: Atomicity is required even if ring buffer is configured in fifo mode, with single write point and single read point.

Tip: You can disable atomic operations in the library, by defining LWRB_DISABLE_ATOMIC global macro (typically
with -D compiler option). It is then up to the developer to make sure architecture properly handles atomic operations.

6.3 Tips & tricks

6.3.1 Application buffer size

Buffer size shall always be 1 byte bigger than anticipated data size.

When application uses buffer for some data block N times, it is advised to set buffer size to 1 byte more than N *
block_size is. This is due to R and W pointers alignment.

Note: For more information, check How it works.

Listing 8: Application buffer size assignment

1 #include "lwrb/lwrb.h"
2

3 /* Number of data blocks to write */
4 #define N 3

(continues on next page)

6.3. Tips & tricks 25

LwRB

(continued from previous page)

5

6 /* Create custom data structure */
7 /* Data is array of 2 32-bit words, 8-bytes */
8 uint32_t d[2];
9

10 /* Create buffer structures */
11 lwrb_t buff_1;
12 lwrb_t buff_2;
13

14 /* Create data for buffers. Use sizeof structure,
15 multiplied by N (for N instances) */
16 /* Buffer with + 1 bytes bigger memory */
17 uint8_t buff_data_1[sizeof(d) * N + 1];
18 /* Buffer without + 1 at the end */
19 uint8_t buff_data_2[sizeof(d) * N];
20

21 /* Write result values */
22 size_t len_1;
23 size_t len_2;
24

25 /* Initialize buffers */
26 lwrb_init(&buff_1, buff_data_1, sizeof(buff_data_1));
27 lwrb_init(&buff_2, buff_data_2, sizeof(buff_data_2));
28

29 /* Write data to buffer */
30 for (size_t i = 0; i < N; ++i) {
31 /* Prepare data */
32 d.a = i;
33 d.b = i * 2;
34

35 /* Write data to both buffers, memory copy from d to buffer */
36 len_1 = lwrb_write(&buff_1, d, sizeof(d));
37 len_2 = lwrb_write(&buff_2, d, sizeof(d));
38

39 /* Print results */
40 printf("Write buffer 1: %d/%d bytes; buffer 2: %d/%d\r\n",
41 (int)len_1, (int)sizeof(d),
42 (int)len_2, (int)sizeof(d));
43 }

When the code is executed, it produces following output:

26 Chapter 6. Table of contents

LwRB

Listing 9: Application buffer size assignment output

Write: buffer 1: 8/8; buffer 2: 8/8
Write: buffer 1: 8/8; buffer 2: 8/8
Write: buffer 1: 8/8; buffer 2: 7/8 <-- See here -->

6.4 API reference

List of all the modules:

6.4.1 LwRB

group LWRB
Lightweight ring buffer manager.

Defines

LWRB_FLAG_READ_ALL

LWRB_FLAG_WRITE_ALL

Typedefs

typedef atomic_ulong lwrb_sz_atomic_t
Atomic type for size variable. Default value is set to be unsigned 32-bits type.

typedef unsigned long lwrb_sz_t
Size variable for all library operations. Default value is set to be unsigned 32-bits type.

typedef void (*lwrb_evt_fn)(struct lwrb *buff, lwrb_evt_type_t evt, lwrb_sz_t bp)
Event callback function type.

Param buff
[in] Buffer handle for event

Param evt
[in] Event type

Param bp
[in] Number of bytes written or read (when used), depends on event type

6.4. API reference 27

LwRB

Enums

enum lwrb_evt_type_t
Event type for buffer operations.

Values:

enumerator LWRB_EVT_READ
Read event

enumerator LWRB_EVT_WRITE
Write event

enumerator LWRB_EVT_RESET
Reset event

Functions

uint8_t lwrb_init(lwrb_t *buff, void *buffdata, lwrb_sz_t size)
Initialize buffer handle to default values with size and buffer data array.

Parameters

• buff – [in] Ring buffer instance

• buffdata – [in] Pointer to memory to use as buffer data

• size – [in] Size of buffdata in units of bytes Maximum number of bytes buffer can hold
is size - 1

Returns
1 on success, 0 otherwise

uint8_t lwrb_is_ready(lwrb_t *buff)
Check if buff is initialized and ready to use.

Parameters
buff – [in] Ring buffer instance

Returns
1 if ready, 0 otherwise

void lwrb_free(lwrb_t *buff)
Free buffer memory.

Note: Since implementation does not use dynamic allocation, it just sets buffer handle to NULL

Parameters
buff – [in] Ring buffer instance

28 Chapter 6. Table of contents

LwRB

void lwrb_reset(lwrb_t *buff)
Resets buffer to default values. Buffer size is not modified.

Note: This function is not thread safe. When used, application must ensure there is no active read/write
operation

Parameters
buff – [in] Ring buffer instance

void lwrb_set_evt_fn(lwrb_t *buff, lwrb_evt_fn fn)
Set event function callback for different buffer operations.

Parameters

• buff – [in] Ring buffer instance

• evt_fn – [in] Callback function

void lwrb_set_arg(lwrb_t *buff, void *arg)
Set custom buffer argument, that can be retrieved in the event function.

Parameters

• buff – [in] Ring buffer instance

• arg – [in] Custom user argument

void *lwrb_get_arg(lwrb_t *buff)
Get custom buffer argument, previously set with lwrb_set_arg.

Parameters
buff – [in] Ring buffer instance

Returns
User argument, previously set with lwrb_set_arg

lwrb_sz_t lwrb_write(lwrb_t *buff, const void *data, lwrb_sz_t btw)
Write data to buffer. Copies data from data array to buffer and marks buffer as full for maximum btw
number of bytes.

Parameters

• buff – [in] Ring buffer instance

• data – [in] Pointer to data to write into buffer

• btw – [in] Number of bytes to write

Returns
Number of bytes written to buffer. When returned value is less than btw, there was no enough
memory available to copy full data array.

lwrb_sz_t lwrb_read(lwrb_t *buff, void *data, lwrb_sz_t btr)
Read data from buffer. Copies data from buffer to data array and marks buffer as free for maximum btr
number of bytes.

Parameters

• buff – [in] Ring buffer instance

• data – [out] Pointer to output memory to copy buffer data to

6.4. API reference 29

LwRB

• btr – [in] Number of bytes to read

Returns
Number of bytes read and copied to data array

lwrb_sz_t lwrb_peek(const lwrb_t *buff, lwrb_sz_t skip_count, void *data, lwrb_sz_t btp)
Read from buffer without changing read pointer (peek only)

Parameters

• buff – [in] Ring buffer instance

• skip_count – [in] Number of bytes to skip before reading data

• data – [out] Pointer to output memory to copy buffer data to

• btp – [in] Number of bytes to peek

Returns
Number of bytes peeked and written to output array

uint8_t lwrb_write_ex(lwrb_t *buff, const void *data, lwrb_sz_t btw, lwrb_sz_t *bw, uint16_t flags)
Write extended functionality.

Parameters

• buff – Ring buffer instance

• data – Pointer to data to write into buffer

• btw – Number of bytes to write

• bw – Output pointer to write number of bytes written

• flags – Optional flags. LWRB_FLAG_WRITE_ALL: Request to write all data (up to
btw). Will early return if no memory available

Returns
1 if write operation OK, 0 otherwise

uint8_t lwrb_read_ex(lwrb_t *buff, void *data, lwrb_sz_t btr, lwrb_sz_t *br, uint16_t flags)
Write extended functionality.

Parameters

• buff – Ring buffer instance

• data – Pointer to memory to write read data from buffer

• btr – Number of bytes to read

• br – Output pointer to write number of bytes read

• flags – Optional flags LWRB_FLAG_READ_ALL: Request to read all data (up to btr).
Will early return if no enough bytes in the buffer

Returns
1 if read operation OK, 0 otherwise

lwrb_sz_t lwrb_get_free(const lwrb_t *buff)
Get available size in buffer for write operation.

Parameters
buff – [in] Ring buffer instance

Returns
Number of free bytes in memory

30 Chapter 6. Table of contents

LwRB

lwrb_sz_t lwrb_get_full(const lwrb_t *buff)
Get number of bytes currently available in buffer.

Parameters
buff – [in] Ring buffer instance

Returns
Number of bytes ready to be read

void *lwrb_get_linear_block_read_address(const lwrb_t *buff)
Get linear address for buffer for fast read.

Parameters
buff – [in] Ring buffer instance

Returns
Linear buffer start address

lwrb_sz_t lwrb_get_linear_block_read_length(const lwrb_t *buff)
Get length of linear block address before it overflows for read operation.

Parameters
buff – [in] Ring buffer instance

Returns
Linear buffer size in units of bytes for read operation

lwrb_sz_t lwrb_skip(lwrb_t *buff, lwrb_sz_t len)
Skip (ignore; advance read pointer) buffer data Marks data as read in the buffer and increases free memory
for up to len bytes.

Note: Useful at the end of streaming transfer such as DMA

Parameters

• buff – [in] Ring buffer instance

• len – [in] Number of bytes to skip and mark as read

Returns
Number of bytes skipped

void *lwrb_get_linear_block_write_address(const lwrb_t *buff)
Get linear address for buffer for fast read.

Parameters
buff – [in] Ring buffer instance

Returns
Linear buffer start address

lwrb_sz_t lwrb_get_linear_block_write_length(const lwrb_t *buff)
Get length of linear block address before it overflows for write operation.

Parameters
buff – [in] Ring buffer instance

Returns
Linear buffer size in units of bytes for write operation

6.4. API reference 31

LwRB

lwrb_sz_t lwrb_advance(lwrb_t *buff, lwrb_sz_t len)
Advance write pointer in the buffer. Similar to skip function but modifies write pointer instead of read.

Note: Useful when hardware is writing to buffer and application needs to increase number of bytes written
to buffer by hardware

Parameters

• buff – [in] Ring buffer instance

• len – [in] Number of bytes to advance

Returns
Number of bytes advanced for write operation

uint8_t lwrb_find(const lwrb_t *buff, const void *bts, lwrb_sz_t len, lwrb_sz_t start_offset, lwrb_sz_t
*found_idx)

Searches for a needle in an array, starting from given offset.

Note: This function is not thread-safe.

Parameters

• buff – Ring buffer to search for needle in

• bts – Constant byte array sequence to search for in a buffer

• len – Length of the

– bts array

• start_offset – Start offset in the buffer

• found_idx – Pointer to variable to write index in array where bts has been found Must not
be set to NULL

Returns
1 if

• bts found, 0 otherwise

lwrb_sz_t lwrb_overwrite(lwrb_t *buff, const void *data, lwrb_sz_t btw)

lwrb_sz_t lwrb_move(lwrb_t *dest, lwrb_t *src)

struct lwrb_t
#include <lwrb.h> Buffer structure.

32 Chapter 6. Table of contents

LwRB

Public Members

uint8_t *buff
Pointer to buffer data. Buffer is considered initialized when buff != NULL and size > 0

lwrb_sz_t size
Size of buffer data. Size of actual buffer is 1 byte less than value holds

lwrb_sz_atomic_t r
Next read pointer. Buffer is considered empty when r == w and full when w == r - 1

lwrb_sz_atomic_t w
Next write pointer. Buffer is considered empty when r == w and full when w == r - 1

lwrb_evt_fn evt_fn
Pointer to event callback function

void *arg
Event custom user argument

6.5 Changelog

Changelog

Develop

- Add user argument option

v3.1.0

- Preparation for `v3.1`
- Replace `size_t` with custom defined type `lwrb_sz_t` which matches atomicity␣
→˓requirements
- `lwrb_sz_t` is by default typedef-ed as `unsigned long`
- Prepare `lwrb_write_ex` and `lwrb_read_ex` functions
- Implement `lwrb_write_ex` and `lwrb_read_ex` functions
- Fix `_ex` module throwing an error for Platform.IO

v3.0.0

- Added macros for optional STDATOMIC. Global `-DLWRB_DISABLE_ATOMIC` macro will disable␣
→˓C11 `<stdatomic.h>` functionality.
- Add `lwrb_move` and `lwrb_overwrite`
- Fix `lwrb_find` which failed to properly search for tokens at corner cases

v3.1.0-RC1

- Split CMakeLists.txt files between library and executable
(continues on next page)

6.5. Changelog 33

LwRB

(continued from previous page)

- Change license year to 2022
- Update code style with astyle
- Minimum required version is C11, with requirement of `stdatomic.h` library
- Add `.clang-format` draft

v2.0.3

- Add `library.json` for Platform.IO

v2.0.2

- Add `volatile` keyword to all local variables to ensure thread safety in highest␣
→˓optimization
- Add local variables for all read and write pointer accesses
- Remove generic `volatile` keyword from func parameter and replace to struct member

v2.0.1

- Fix wrong check for valid RB instance
- Apply code style settings with Artistic style options
- Add thread safety docs

v2.0.0

- Break compatibility with previous versions
- Rename function prefixes to `lwrb` instead of `ringbuff`
- Add astyle code syntax correction

v1.3.1

- Fixed missing `RINGBUFF_VOLATILE` for event callback causes compiler warnings or errors

v1.3.0

- Added support for events on read/write or reset operation
- Added optional volatile parameter for buffer structure
- Fix bug in skip and advance operation to return actual amount of bytes processed
- Remove `BUF_PREF` parameter and rename with fixed `ringbuff_` prefix for all functions

v1.2.0

- Added first sphinx documentation

v1.1.0

- Code optimizations, use pre-increment instead of post
- Another code-style fixes

v1.0.0

- First stable release

34 Chapter 6. Table of contents

LwRB

6.6 Authors

List of authors and contributors to the library

Tilen Majerle <tilen@majerle.eu>
Tilen Majerle <tilen.majerle@gmail.com>
Jaedeok Kim <jdeokkim@protonmail.com>
Thomas Devoogdt <thomas@devoogdt.com>
LinJieqiang <517503838@qq.com>
jnz86 <jumpifnotzero@gmail.com>
Junde Yhi <junde@yhi.moe>
Jackistang <tangjia.jackis@qq.com>
Tofik Sonono <tofik@sonono.me>

6.6. Authors 35

LwRB

36 Chapter 6. Table of contents

INDEX

L
lwrb_advance (C++ function), 31
lwrb_evt_fn (C++ type), 27
lwrb_evt_type_t (C++ enum), 28
lwrb_evt_type_t::LWRB_EVT_READ (C++ enumera-

tor), 28
lwrb_evt_type_t::LWRB_EVT_RESET (C++ enumera-

tor), 28
lwrb_evt_type_t::LWRB_EVT_WRITE (C++ enumera-

tor), 28
lwrb_find (C++ function), 32
LWRB_FLAG_READ_ALL (C macro), 27
LWRB_FLAG_WRITE_ALL (C macro), 27
lwrb_free (C++ function), 28
lwrb_get_arg (C++ function), 29
lwrb_get_free (C++ function), 30
lwrb_get_full (C++ function), 31
lwrb_get_linear_block_read_address (C++ func-

tion), 31
lwrb_get_linear_block_read_length (C++ func-

tion), 31
lwrb_get_linear_block_write_address (C++

function), 31
lwrb_get_linear_block_write_length (C++ func-

tion), 31
lwrb_init (C++ function), 28
lwrb_is_ready (C++ function), 28
lwrb_move (C++ function), 32
lwrb_overwrite (C++ function), 32
lwrb_peek (C++ function), 30
lwrb_read (C++ function), 29
lwrb_read_ex (C++ function), 30
lwrb_reset (C++ function), 28
lwrb_set_arg (C++ function), 29
lwrb_set_evt_fn (C++ function), 29
lwrb_skip (C++ function), 31
lwrb_sz_atomic_t (C++ type), 27
lwrb_sz_t (C++ type), 27
lwrb_t (C++ struct), 32
lwrb_t::arg (C++ member), 33
lwrb_t::buff (C++ member), 33
lwrb_t::evt_fn (C++ member), 33

lwrb_t::r (C++ member), 33
lwrb_t::size (C++ member), 33
lwrb_t::w (C++ member), 33
lwrb_write (C++ function), 29
lwrb_write_ex (C++ function), 30

37

	Features
	Requirements
	Contribute
	Example code
	License
	Table of contents
	Getting started
	Download library
	Download from releases
	Clone from Github
	First-time clone
	Update cloned to latest version

	Add library to project
	Minimal example code

	User manual
	How it works
	Events
	DMA for embedded systems
	Zero-copy data from LwRB memory
	Zero-copy data to LwRB memory
	Example for DMA transfer from memory

	Thread safety
	Atomicity

	Tips & tricks
	Application buffer size

	API reference
	LwRB

	Changelog
	Authors

	Index

