

LwBTN v0.0.1 documentation

Welcome to the documentation for version v0.0.1.

[image: _images/logo.svg]Download library Getting started Open Github [https://github.com/MaJerle/lwbtn] Donate [https://paypal.me/tilz0R]

Features

	Written in ANSI C99

	Platform independent, requires user to provide millisecond timing source

	No dynamic memory allocation

	Callback driven event management

	Easy to use and maintain

	User friendly MIT license

Requirements

	C compiler

	Few kB of non-volatile memory

Contribute

Fresh contributions are always welcome. Simple instructions to proceed:

	Fork Github repository

	Respect C style & coding rules [https://github.com/MaJerle/c-code-style] used by the library

	Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

	Report a bug

	Ask for a feature request

License

MIT License

Copyright (c) 2022 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Table of contents

Contents

	LwBTN v0.0.1 documentation

	Getting started
	Download library

	Add library to project

	Configuration file

	User manual
	How it works

	Input events

	On-Press event

	On-Release event

	On-Click event

	Multi-click events

	Keep alive event

	API reference
	LwBTN

	Configuration

	Changelog

Getting started

Getting started may be the most challenging part of every new library.
This guide is describing how to start with the library quickly and effectively

Download library

Library is primarly hosted on Github [https://github.com/MaJerle/lwbtn].

You can get it by:

	Downloading latest release from releases area [https://github.com/MaJerle/lwbtn/releases] on Github

	Cloning main branch for latest stable version

	Cloning develop branch for latest development

Download from releases

All releases are available on Github releases area [https://github.com/MaJerle/lwbtn/releases].

Clone from Github

First-time clone

This is used when you do not have yet local copy on your machine.

	Make sure git is installed.

	Open console and navigate to path in the system to clone repository to. Use command cd your_path

	Clone repository with one of available options below

	Run git clone --recurse-submodules https://github.com/MaJerle/lwbtn command to clone entire repository, including submodules

	Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/lwbtn to clone development branch, including submodules

	Run git clone --recurse-submodules --branch main https://github.com/MaJerle/lwbtn to clone latest stable branch, including submodules

	Navigate to examples directory and run favourite example

Update cloned to latest version

	Open console and navigate to path in the system where your repository is located. Use command cd your_path

	Run git pull origin main command to get latest changes on main branch

	Run git pull origin develop command to get latest changes on develop branch

	Run git submodule update --init --remote to update submodules to latest version

Note

This is preferred option to use when you want to evaluate library and run prepared examples.
Repository consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root repository.

Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.
Next step is to add the library to the project, by means of source files to compiler inputs and header files in search path

	Copy lwbtn folder to your project, it contains library files

	Add lwbtn/src/include folder to include path of your toolchain. This is where C/C++ compiler can find the files during compilation process. Usually using -I flag

	Add source files from lwbtn/src/ folder to toolchain build. These files are built by C/C++ compiler

	Copy lwbtn/src/include/lwbtn/lwbtn_opts_template.h to project folder and rename it to lwbtn_opts.h

	Copy lwbtn/src/include/lwbtn/lwbtn_types_template.h to project folder and rename it to lwbtn_types.h

	Build the project

Configuration file

Configuration file is used to overwrite default settings defined for the essential use case.
Library comes with template config file, which can be modified according to needs.
and it should be copied (or simply renamed in-place) and named lwbtn_opts.h

Note

Default configuration template file location: lwbtn/src/include/lwbtn/lwbtn_opts_template.h.
File must be renamed to lwbtn_opts.h first and then copied to the project directory where compiler
include paths have access to it by using #include "lwbtn_opts.h".

List of configuration options are available in the Configuration section.
If any option is about to be modified, it should be done in configuration file

Template configuration file

 1/**
 2 * \file lwbtn_opts_template.h
 3 * \brief LwBTN configuration file
 4 */
 5
 6/*
 7 * Copyright (c) 2022 Tilen MAJERLE
 8 *
 9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwBTN - Lightweight button manager.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v0.0.1
33 */
34#ifndef LWBTN_HDR_OPTS_H
35#define LWBTN_HDR_OPTS_H
36
37/* Rename this file to "lwbtn_opts.h" for your application */
38
39/*
40 * Open "include/lwbtn/lwbtn_opt.h" and
41 * copy & replace here settings you want to change values
42 */
43
44#endif /* LWBTN_HDR_OPTS_H */

Note

If you prefer to avoid using configuration file, application must define
a global symbol LWBTN_IGNORE_USER_OPTS, visible across entire application.
This can be achieved with -D compiler option.

User manual

LwBTN is simple button manager library, with great focus on embedded systems.
Motivation behind start of development was linked to several on-going projects including some input reading (button handling),
each of them demanding little differences in process.

LwBTN is therefore relatively simple and lightweight, yet it can provide pretty comprehensive processing of your application buttons.

How it works

User must define buttons array and pass it to the library. Next to that, 2 more functions are required:

	Function to read the architecture button state

	Function to receive various button events

User shall later periodically call processing function with current system time as simple parameter and get ready to receive various events.

Input events

During button (or input if you will) lifetime, application can expect some of these events (but not limited to):

	LWBTN_EVT_ONPRESS event is sent to application whenever input goes from inactive to active state and minimum debounce time passes by

	LWBTN_EVT_ONRELEASE event is sent to application whenever input sent onpress event prior to that and when input goes from active to inactive state

	LWBTN_EVT_KEEPALIVE event is periodically sent between onpress and onrelease events

	LWBTN_EVT_ONCLICK event is sent after onrelease and only if active button state was within allowed window for valid click event.

On-Press event

Onpress event is the first in a row when input is detected active.
With nature of embedded systems and various buttons connected to devices, it is necessary to filter out potential noise to ignore unintential multiple presses.
This is done by checking line to be at stable level for at least some minimum time, normally called debounce time, usually it takes around 20ms.

[image: On-Press event trigger after minimum debounce time]On-Press event trigger after minimum debounce time

On-Release event

Onrelease event is triggered immediately when input goes from active to inactive state, and only if onpress event has been detected prior to that.

[image: On-Release event trigger]On-Release event trigger

On-Click event

Onclick event is triggered after a combination of multiple events:

	Onpress event shall be detected properly, indicating button has been pressed

	Onrelease event shall be detected, indicating button has been released

	Time between onpress and onrelease events has to be within time window

When conditions are met, onclick event is sent, either immediately after onrelease or after certain timeout after onrelease event.

[image: Sequence for valid click event]Sequence for valid click event

A windows-test program demonstration of events is visible below.

[image: Click event test program]
Click event test program

Second number for each line is a milliseconds difference between events.
OnClick is reported approximately (windows real-time issue) 400 ms after on-release event.

Tip

Timeout window between last onrelease event and onclick event is configurable

Multi-click events

Multi-click feature is where timeout for onclick event comes into play.
Idea behind timeout feature is to allow multiple presses and to only send onclick once for all presses,
including the number of detected presses during that time. This let’s the application to react only
once with known number of presses.
This eliminates the problem where in case of double click trigger, you also receive single-click event,
while you do not know yet, if second (or third) event will be triggered after.

Note

Imagine having a button that toggles one light on single click and turns off all lights in a room on double click.
With timeout feature and single onclick notification, user will only receive the onclick once and will,
based on the consecutive presses number value, perform appropriate action if it was single or multi click.

Simplified diagram for multi-click, ignoring debounce time indicators, is below.
cp indicates number of detected consecutive onclick press events, to be reported in the final onclick event

[image: Multi-click event example - with 3 consecutive presses]Multi-click event example - with 3 consecutive presses

A windows-test program demonstration of events is visible below.

[image: Multi-click event test program]
Multi-click event test program

Multi-click event with onclick event reported only after second press after minimum timeout of 400ms.

Note

Number of consecutive clicks can be upper-limited to the desired value.

When user makes more (or equal) consecutive clicks than maximum, an onclick event is sent immediately after onrelease event for last detected click.

[image: Max number of onclick events]
Max number of onclick events, onclick is sent immediately after onrelease

There is no need to wait timeout expiration since upper clicks limit has been reached.

Tip

It is possible to control the behavior of onclick event (when consecutive number reaches maximum set value) timing using LWBTN_CFG_CLICK_MAX_CONSECUTIVE_SEND_IMMEDIATELY configuration.
When enabled, behavior is as illustrated above. When disabled, onclick event it sent in timeout (or in case of new onpress), even if max allowed clicks has been reached.

Illustration below shows what happens during multiple clicks

	Max number of consecutive clicks is 3

	User makes 4 consecutive clicks

[image: Multi-click events with too many clicks - consecutive send immediately is enabled]Multi-click events with too many clicks - consecutive send immediately is enabled - it is sent after 3rd onrelease

[image: Multi-click events with too many clicks - consecutive send immediately is disabled - it is sent before 4th onpress]Multi-click events with too many clicks - consecutive send immediately is disabled

Image below illustrates when send immediately is enabled. It is visible how first onclick is sent
just after onrelease event (when max consecutive is set to 3).

[image: 5 presses detected with 3 set as maximum]
5 presses detected with 3 set as maximum. First on-click is sent immediately, while second is sent after timeout

When multi-click feature is disabled, onclick event is sent after every valid sequence of onpress and onrelease events.

Tip

If you do not want multi-click feature, set max number of consecutive clicks to 1. This will eliminate timeout feature since
every click event will trigger maximum clicks detected and therefore send the event immediately after onrelease

[image: Multi-click events disabled with cp == 1]Multi-click events disabled with cp == 1

Demo log text, with fast pressing of button, and events reported after every onrelease

[image: Multi-click events disabled with cp == 1]
Multi-click events disabled with cp == 1

Keep alive event

Keep-alive event is sent periodically between onpress and onrelease events.
It can be used to detect application is still alive and provides counter how many keep-alive events have been sent up to the point of event.

Feature can be used to make a trigger at specific time if button is in active state (a hold event).

[image: Keep alive events with 2 successful click events]Keep alive events with 2 successful click events

[image: Keep alive events when button is kept pressed]
Keep alive events when button is kept pressed

API reference

List of all the modules:

	LwBTN

	Configuration

LwBTN

	
group LWBTN

	Lightweight button manager.

Defines

	
lwbtn_init(btns, btns_cnt, get_state_fn, evt_fn)

	Initialize LwBTN library with buttons on default button group.

See also

lwbtn_init_ex

	Parameters

	
	btns – [in] Array of buttons to process

	btns_cnt – [in] Number of buttons to process

	get_state_fn – [in] Pointer to function providing button state on demand

	evt_fn – [in] Button event function callback

	
lwbtn_process(mstime)

	Periodically read button states and take appropriate actions.

See also

lwbtn_process_ex

	Parameters

	
	mstime – [in] Current system time in milliseconds

Typedefs

	
typedef void (*lwbtn_evt_fn)(struct lwbtn *lw, struct lwbtn_btn *btn, lwbtn_evt_t evt)

	Button event function callback prototype.

	Param lw

	[in] LwBTN instance

	Param btn

	[in] Button instance from array for which event occured

	Param evt

	[in] Event type

	
typedef uint8_t (*lwbtn_get_state_fn)(struct lwbtn *lw, struct lwbtn_btn *btn)

	Get button/input state callback function.

	Param lw

	[in] LwBTN instance

	Param btn

	[in] Button instance from array to read state

	Return

	1 when button is considered active, 0 otherwise

Enums

	
enum lwbtn_evt_t

	List of button events.

Values:

	
enumerator LWBTN_EVT_ONPRESS = 0x00

	On press event - sent when valid press is detected (after debounce if enabled)

	
enumerator LWBTN_EVT_ONRELEASE

	On release event - sent when valid release event is detected (from active to inactive)

	
enumerator LWBTN_EVT_ONCLICK

	On Click event - sent when valid sequence of on-press and on-release events occurs

	
enumerator LWBTN_EVT_KEEPALIVE

	Keep alive event - sent periodically when button is active

Functions

	
uint8_t lwbtn_init_ex(lwbtn_t *lw, lwbtn_btn_t *btns, uint16_t btns_cnt, lwbtn_get_state_fn get_state_fn, lwbtn_evt_fn evt_fn)

	Initialize button manager.

	Parameters

	
	lw – [in] LwBTN instance. Set to NULL to use default one

	btns – [in] Array of buttons to process

	btns_cnt – [in] Number of buttons to process

	get_state_fn – [in] Pointer to function providing button state on demand

	evt_fn – [in] Button event function callback

	Returns

	1 on success, 0 otherwise

	
uint8_t lwbtn_process_ex(lwbtn_t *lw, uint32_t mstime)

	Button processing function, that reads the inputs and makes actions accordingly.

	Parameters

	mstime – [in] Current time in milliseconds

	Returns

	1 on success, 0 otherwise

	
struct lwbtn_argdata_port_pin_state_t

	
#include <lwbtn.h>

Custom user argument data structure.

This is a simple pre-defined structure, that can be used by user to define most commonly required feature in embedded systems, that being GPIO port, GPIO pin and state when button is considered active.

User can later attach this structure as argument to button structure

Public Members

	
void *port

	User defined GPIO port information

	
void *pin

	User defined GPIO pin information

	
uint8_t state

	User defined GPIO state level when considered active

	
struct lwbtn_btn_t

	
#include <lwbtn.h>

Button/input structure.

Public Members

	
uint16_t flags

	Private button flags management

	
uint8_t old_state

	Old button state - 1 means active, 0 means inactive

	
uint32_t time_change

	Time in ms when button state got changed last time

	
uint32_t last_time

	Time in ms of last send keep alive event

Time in ms of last successfully detected (not sent!) click event

	
uint16_t cnt

	Number of keep alive events sent after successful on-press detection. Value is reset after on-release

	
struct lwbtn_btn_t::[anonymous] keepalive

	Keep alive structure

	
uint8_t cnt

	Number of consecutive clicks detected, respecting maximum timeout between clicks

	
struct lwbtn_btn_t::[anonymous] click

	Click event structure

	
void *arg

	User defined custom argument for callback function purpose

	
struct lwbtn_t

	
#include <lwbtn.h>

LwBTN group structure.

Public Members

	
lwbtn_btn_t *btns

	Pointer to buttons array

	
uint16_t btns_cnt

	Number of buttons in array

	
lwbtn_evt_fn evt_fn

	Pointer to event function

	
lwbtn_get_state_fn get_state_fn

	Pointer to get state function

Configuration

This is the default configuration of the middleware.
When any of the settings shall be modified, it shall be done in dedicated application config lwbtn_opts.h file.

Note

Check Getting started for guidelines on how to create and use configuration file.

	
group LWBTN_OPT

	Default configuration setup.

Defines

	
LWBTN_CFG_TIME_DEBOUNCE

	Minimum debounce time in units of milliseconds.

This is the time input shall have stable level to detect valid onpress event

	
LWBTN_CFG_TIME_CLICK_MIN

	Minimum active input time for valid click event, in milliseconds.

Input shall be pressed at least this amount of time to even consider the potential valid click event. Set the value to 0 to disable this feature

	
LWBTN_CFG_TIME_CLICK_MAX

	Maximum active input time for valid click event, in milliseconds.

Input shall be pressed at most this amount of time to still trigger valid click. Set to -1 to allow any time triggering click event.

	
LWBTN_CFG_TIME_CLICK_MULTI_MAX

	Maximum allowed time between last on-release and next valid on-press, to still allow multi-click events, in milliseconds.

This value is also used as a timeout length. It sends onclick event if there is no further presses by the application.

	
LWBTN_CFG_CLICK_MAX_CONSECUTIVE

	Maximum number of allowed consecutive click events, before structure gets reset to default value.

	
LWBTN_CFG_TIME_KEEPALIVE_PERIOD

	Keep-alive event period, in milliseconds.

	
LWBTN_CFG_CLICK_MAX_CONSECUTIVE_SEND_IMMEDIATELY

	Enables 1 or disables 0 immediate onclick event after on-release event, if number of consecutive clicks reaches max value.

When this mode is disabled, onclick is sent in one of 2 cases:

	An on-click timeout occurred

	Next on-press event occurred before timeout expired

Changelog

Changelog

Develop

- First commit

Index

 L

L

 	
 	lwbtn_argdata_port_pin_state_t (C++ struct)

 	lwbtn_argdata_port_pin_state_t::pin (C++ member)

 	lwbtn_argdata_port_pin_state_t::port (C++ member)

 	lwbtn_argdata_port_pin_state_t::state (C++ member)

 	lwbtn_btn_t (C++ struct)

 	lwbtn_btn_t::arg (C++ member)

 	lwbtn_btn_t::click (C++ member)

 	lwbtn_btn_t::cnt (C++ member), [1]

 	lwbtn_btn_t::flags (C++ member)

 	lwbtn_btn_t::keepalive (C++ member)

 	lwbtn_btn_t::last_time (C++ member)

 	lwbtn_btn_t::old_state (C++ member)

 	lwbtn_btn_t::time_change (C++ member)

 	LWBTN_CFG_CLICK_MAX_CONSECUTIVE (C macro)

 	LWBTN_CFG_CLICK_MAX_CONSECUTIVE_SEND_IMMEDIATELY (C macro)

 	LWBTN_CFG_TIME_CLICK_MAX (C macro)

 	LWBTN_CFG_TIME_CLICK_MIN (C macro)

 	LWBTN_CFG_TIME_CLICK_MULTI_MAX (C macro)

 	
 	LWBTN_CFG_TIME_DEBOUNCE (C macro)

 	LWBTN_CFG_TIME_KEEPALIVE_PERIOD (C macro)

 	lwbtn_evt_fn (C++ type)

 	lwbtn_evt_t (C++ enum)

 	lwbtn_evt_t::LWBTN_EVT_KEEPALIVE (C++ enumerator)

 	lwbtn_evt_t::LWBTN_EVT_ONCLICK (C++ enumerator)

 	lwbtn_evt_t::LWBTN_EVT_ONPRESS (C++ enumerator)

 	lwbtn_evt_t::LWBTN_EVT_ONRELEASE (C++ enumerator)

 	lwbtn_get_state_fn (C++ type)

 	lwbtn_init (C macro)

 	lwbtn_init_ex (C++ function)

 	lwbtn_process (C macro)

 	lwbtn_process_ex (C++ function)

 	lwbtn_t (C++ struct)

 	lwbtn_t::btns (C++ member)

 	lwbtn_t::btns_cnt (C++ member)

 	lwbtn_t::evt_fn (C++ member)

 	lwbtn_t::get_state_fn (C++ member)

 _static/images/logo_tm.png

_static/images/logo_tm_full.png
majerle.eu

Knowledge sharing is caring

_images/log-btn-event-click-multi-max.png
187674] [
187705][
187877][
187892][
188032]
188048]
188058] [

0]
31]
172]
15]
140]
16]
10]

CH:
CH:
CH:
CH:
CH:
CH:
CH:

PRRERRRR

evt:
evt
evt:
evt
evt:
evt

ONPRESS,
ONRELEASE,
ONPRESS,
ONRELEASE,
ONPRESS,
ONRELEASE,
ONCLICK,

keep-alive cnt:

keep-alive

keep-alive cnt:

keep-alive
keep-alive
keep-alive
keep-alive

Sooeeee

click
click
click
click
click
click
click

cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt

WNNRFRO®

_images/log-btn-event-click-multi.png
[601464][@] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt:
[601494][30] CH: 1, evt: ONRELEASE, keep-alive cnt: @, click cnt:
[601635][141] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt:
[601650][15] CH: 1, evt: ONRELEASE, keep-alive cnt: @, click cnt:
[662056][406] CH: 1, evt: ONCLICK, keep-alive cnt: @, click cnt:

NP R OO

_images/log-btn-event-click-disabled.png
15823][
15839][
15853][
16007] [
16023][
16028][
16180] [
16211][
16216][

152]
15]
15]

154]
16]

51

151]

32]
5]

PRPRPRRPR

evt:
evt:
evt:
evt:
evt:
evt:
evt:
evt:

ONPRESS,
ONRELEASE,
ONCLICK,
ONPRESS,
ONRELEASE,
ONCLICK,
ONPRESS,
ONRELEASE,
ONCLICK,

keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
[azo-cllme

cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt:

SO SD

click
click
click
click
click
click
click
click
click

RPOOROOR®®

_images/log-btn-event-click-multi-max-over.png
2422531[@] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt: @
242284][31] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 0
242455][170] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click 1
242485][31] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 1
242673][188] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click 2
242704][31] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 2
242709][5] CH: 1, evt: ONCLICK, keep-alive cnt: 0, click 3
243125][200] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click 1
243171][46] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 1
243578][467] CH: 1, evt: ONCLICK, keep-alive cnt: 0, click 2

_images/log-btn-event-click.png
Application running

[653710 0] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click cnt: ©
[6583][46] CH: 1, evt: ONRELEASE, keep-alive cn 0, click cnt: @
[6987] 403] CH: 1, evt: ONCLICK, keep-alive cnt: @, click cnt: 1

_images/log-btn-event-keep-alive.png
280771][@] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt:
280880][109] CH: 1, evt: KEEPALIVE, keep-alive 1, click ent:
280975][95] CH: 1, evt: KEEPALIVE, keep-alive cnt: 2, click cnt:
281084][109] CH: 1, evt: KEEPALIVE, keep-alive 3, click ent:
281177][93] CH: 1, evt: KEEPALIVE, keep-alive 4, click ent:
281271][94] CH: 1, evt: KEEPALIVE, keep-alive 5, click ent:
281382][111] CH: 1, evt: KEEPALIVE, keep-alive 6, click cnt:
281475][93] CH: 1, evt: KEEPALIVE, keep-alive cnt: 7, click cnt:
281585][110] CH: 1, evt: KEEPALIVE, keep-alive 8, click cnt:
281678][93] CH: 1, evt: KEEPALIVE, keep-alive cnt: 9, click cnt:
281772][94] CH: 1, evt: KEEPALIVE, keep-alive 10, click cnt:
281849][77] CH: 1, evt: ONRELEASE, keep-alive 10, click cnt:

P PP E® O

_static/file.png

nav.xhtml

 Table of Contents

 		
 LwBTN v0.0.1 documentation

 		
 Getting started

 		
 Download library

 		
 Download from releases

 		
 Clone from Github

 		
 Add library to project

 		
 Configuration file

 		
 User manual

 		
 How it works

 		
 Input events

 		
 On-Press event

 		
 On-Release event

 		
 On-Click event

 		
 Multi-click events

 		
 Keep alive event

 		
 API reference

 		
 LwBTN

 		
 Configuration

 		
 Changelog

_static/minus.png

_static/plus.png

_static/dark-light/moon.png

_static/dark-light/sun.png

_static/images/log-btn-event-click-multi-max.png
187674] [
187705][
187877][
187892][
188032]
188048]
188058] [

0]
31]
172]
15]
140]
16]
10]

CH:
CH:
CH:
CH:
CH:
CH:
CH:

PRRERRRR

evt:
evt
evt:
evt
evt:
evt

ONPRESS,
ONRELEASE,
ONPRESS,
ONRELEASE,
ONPRESS,
ONRELEASE,
ONCLICK,

keep-alive cnt:

keep-alive

keep-alive cnt:

keep-alive
keep-alive
keep-alive
keep-alive

Sooeeee

click
click
click
click
click
click
click

cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt

WNNRFRO®

_static/images/log-btn-event-click-multi.png
[601464][@] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt:
[601494][30] CH: 1, evt: ONRELEASE, keep-alive cnt: @, click cnt:
[601635][141] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt:
[601650][15] CH: 1, evt: ONRELEASE, keep-alive cnt: @, click cnt:
[662056][406] CH: 1, evt: ONCLICK, keep-alive cnt: @, click cnt:

NP R OO

_static/images/log-btn-event-click-disabled.png
15823][
15839][
15853][
16007] [
16023][
16028][
16180] [
16211][
16216][

152]
15]
15]

154]
16]

51

151]

32]
5]

PRPRPRRPR

evt:
evt:
evt:
evt:
evt:
evt:
evt:
evt:

ONPRESS,
ONRELEASE,
ONCLICK,
ONPRESS,
ONRELEASE,
ONCLICK,
ONPRESS,
ONRELEASE,
ONCLICK,

keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
keep-alive
[azo-cllme

cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt:
cnt:

SO SD

click
click
click
click
click
click
click
click
click

RPOOROOR®®

_static/images/log-btn-event-click-multi-max-over.png
2422531[@] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt: @
242284][31] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 0
242455][170] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click 1
242485][31] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 1
242673][188] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click 2
242704][31] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 2
242709][5] CH: 1, evt: ONCLICK, keep-alive cnt: 0, click 3
243125][200] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click 1
243171][46] CH: 1, evt: ONRELEASE, keep-alive cnt: 0, click 1
243578][467] CH: 1, evt: ONCLICK, keep-alive cnt: 0, click 2

_static/images/log-btn-event-click.png
Application running

[653710 0] CH: 1, evt: ONPRESS, keep-alive cnt: 0, click cnt: ©
[6583][46] CH: 1, evt: ONRELEASE, keep-alive cn 0, click cnt: @
[6987] 403] CH: 1, evt: ONCLICK, keep-alive cnt: @, click cnt: 1

_static/images/log-btn-event-keep-alive.png
280771][@] CH: 1, evt: ONPRESS, keep-alive cnt: @, click cnt:
280880][109] CH: 1, evt: KEEPALIVE, keep-alive 1, click ent:
280975][95] CH: 1, evt: KEEPALIVE, keep-alive cnt: 2, click cnt:
281084][109] CH: 1, evt: KEEPALIVE, keep-alive 3, click ent:
281177][93] CH: 1, evt: KEEPALIVE, keep-alive 4, click ent:
281271][94] CH: 1, evt: KEEPALIVE, keep-alive 5, click ent:
281382][111] CH: 1, evt: KEEPALIVE, keep-alive 6, click cnt:
281475][93] CH: 1, evt: KEEPALIVE, keep-alive cnt: 7, click cnt:
281585][110] CH: 1, evt: KEEPALIVE, keep-alive 8, click cnt:
281678][93] CH: 1, evt: KEEPALIVE, keep-alive cnt: 9, click cnt:
281772][94] CH: 1, evt: KEEPALIVE, keep-alive 10, click cnt:
281849][77] CH: 1, evt: ONRELEASE, keep-alive 10, click cnt:

P PP E® O

