
LwBTN

Tilen MAJERLE

Sep 10, 2023

CONTENTS

1 Features 3

2 Requirements 5

3 Contribute 7

4 License 9

5 Table of contents 11
5.1 Getting started . 11
5.2 User manual . 14
5.3 API reference . 25
5.4 Changelog . 33

Index 35

i

ii

LwBTN

Welcome to the documentation for version v1.0.0.

Download library Getting started Open Github Donate

CONTENTS 1

https://github.com/MaJerle/lwbtn
https://paypal.me/tilz0R

LwBTN

2 CONTENTS

CHAPTER

ONE

FEATURES

• Written in C (C11)

• Platform independent, requires user to provide millisecond timing source

• No dynamic memory allocation

• Callback driven event management

• Easy to use and maintain

• User friendly MIT license

3

LwBTN

4 Chapter 1. Features

CHAPTER

TWO

REQUIREMENTS

• C compiler

• Few kB of non-volatile memory

5

LwBTN

6 Chapter 2. Requirements

CHAPTER

THREE

CONTRIBUTE

Fresh contributions are always welcome. Simple instructions to proceed:

1. Fork Github repository

2. Respect C style & coding rules used by the library

3. Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

1. Report a bug

2. Ask for a feature request

7

https://github.com/MaJerle/c-code-style

LwBTN

8 Chapter 3. Contribute

CHAPTER

FOUR

LICENSE

MIT License

Copyright (c) 2023 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

9

LwBTN

10 Chapter 4. License

CHAPTER

FIVE

TABLE OF CONTENTS

5.1 Getting started

Getting started may be the most challenging part of every new library. This guide is describing how to start with the
library quickly and effectively

5.1.1 Download library

Library is primarly hosted on Github.

You can get it by:

• Downloading latest release from releases area on Github

• Cloning main branch for latest stable version

• Cloning develop branch for latest development

Download from releases

All releases are available on Github releases area.

Clone from Github

First-time clone

This is used when you do not have yet local copy on your machine.

• Make sure git is installed.

• Open console and navigate to path in the system to clone repository to. Use command cd your_path

• Clone repository with one of available options below

– Run git clone --recurse-submodules https://github.com/MaJerle/lwbtn command to
clone entire repository, including submodules

– Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/
lwbtn to clone development branch, including submodules

– Run git clone --recurse-submodules --branch main https://github.com/MaJerle/lwbtn
to clone latest stable branch, including submodules

• Navigate to examples directory and run favourite example

11

https://github.com/MaJerle/lwbtn
https://github.com/MaJerle/lwbtn/releases
https://github.com/MaJerle/lwbtn/releases

LwBTN

Update cloned to latest version

• Open console and navigate to path in the system where your repository is located. Use command cd your_path

• Run git pull origin main command to get latest changes on main branch

• Run git pull origin develop command to get latest changes on develop branch

• Run git submodule update --init --remote to update submodules to latest version

Note: This is preferred option to use when you want to evaluate library and run prepared examples. Repository
consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root
repository.

5.1.2 Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page. Next
step is to add the library to the project, by means of source files to compiler inputs and header files in search path

• Copy lwbtn folder to your project, it contains library files

• Add lwbtn/src/include folder to include path of your toolchain. This is where C/C++ compiler can find the
files during compilation process. Usually using -I flag

• Add source files from lwbtn/src/ folder to toolchain build. These files are built by C/C++ compiler. CMake
configuration comes with the library, allows users to include library in the project as subdirectory and library.

• Copy lwbtn/src/include/lwbtn/lwbtn_opts_template.h to project folder and rename it to
lwbtn_opts.h

• Copy lwbtn/src/include/lwbtn/lwbtn_types_template.h to project folder and rename it to
lwbtn_types.h

• Build the project

5.1.3 Configuration file

Configuration file is used to overwrite default settings defined for the essential use case. Library comes with template
config file, which can be modified according to needs. and it should be copied (or simply renamed in-place) and named
lwbtn_opts.h

Note: Default configuration template file location: lwbtn/src/include/lwbtn/lwbtn_opts_template.h. File
must be renamed to lwbtn_opts.h first and then copied to the project directory where compiler include paths have
access to it by using #include "lwbtn_opts.h".

List of configuration options are available in the Configuration section. If any option is about to be modified, it should
be done in configuration file

Listing 1: Template configuration file

1 /**
2 * \file lwbtn_opts_template.h
3 * \brief LwBTN configuration file

(continues on next page)

12 Chapter 5. Table of contents

LwBTN

(continued from previous page)

4 */
5

6 /*
7 * Copyright (c) 2023 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwBTN - Lightweight button manager.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v1.0.0
33 */
34 #ifndef LWBTN_OPTS_HDR_H
35 #define LWBTN_OPTS_HDR_H
36

37 /* Rename this file to "lwbtn_opts.h" for your application */
38

39 /*
40 * Open "include/lwbtn/lwbtn_opt.h" and
41 * copy & replace here settings you want to change values
42 */
43

44 #endif /* LWBTN_OPTS_HDR_H */

Note: If you prefer to avoid using configuration file, application must define a global symbol
LWBTN_IGNORE_USER_OPTS, visible across entire application. This can be achieved with -D compiler option.

5.1. Getting started 13

LwBTN

5.2 User manual

LwBTN is simple button manager library, with great focus on embedded systems. Motivation behind start of develop-
ment was linked to several on-going projects including some input reading (button handling), each of them demanding
little differences in process.

LwBTN is therefore relatively simple and lightweight, yet it can provide pretty comprehensive processing of your
application buttons.

5.2.1 How it works

User must define buttons array and pass it to the library. Next to that, 2 more functions are required:

• Function to read the architecture button state

• Function to receive various button events

User shall later periodically call processing function with current system time as simple parameter and get ready to
receive various events.

A simple example for win32 is below:

Listing 2: Win32 example code

1 #include "lwbtn/lwbtn.h"
2 #include "windows.h"
3 #include <stdio.h>
4 #include <stdlib.h>
5

6 static LARGE_INTEGER freq, sys_start_time;
7 static uint32_t get_tick(void);
8

9 /* User defined settings */
10 const int keys[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'};
11 uint32_t last_time_keys[sizeof(keys) / sizeof(keys[0])] = {0};
12

13 /* List of buttons to process with assigned custom arguments for callback functions */
14 static lwbtn_btn_t btns[] = {
15 {.arg = (void*)&keys[0]}, {.arg = (void*)&keys[1]}, {.arg = (void*)&keys[2]}, {.arg␣

→˓= (void*)&keys[3]},
16 {.arg = (void*)&keys[4]}, {.arg = (void*)&keys[5]}, {.arg = (void*)&keys[6]}, {.arg␣

→˓= (void*)&keys[7]},
17 {.arg = (void*)&keys[8]}, {.arg = (void*)&keys[9]},
18 };
19

20 /**
21 * \brief Get input state callback
22 * \param lw: LwBTN instance
23 * \param btn: Button instance
24 * \return `1` if button active, `0` otherwise
25 */
26 uint8_t
27 prv_btn_get_state(struct lwbtn* lw, struct lwbtn_btn* btn) {
28 (void)lw;

(continues on next page)

14 Chapter 5. Table of contents

LwBTN

(continued from previous page)

29

30 /*
31 * Function will return negative number if button is pressed,
32 * or zero if button is releases
33 */
34 return GetAsyncKeyState(*(int*)btn->arg) < 0;
35 }
36

37 /**
38 * \brief Button event
39 *
40 * \param lw: LwBTN instance
41 * \param btn: Button instance
42 * \param evt: Button event
43 */
44 void
45 prv_btn_event(struct lwbtn* lw, struct lwbtn_btn* btn, lwbtn_evt_t evt) {
46 const char* s;
47 uint32_t color, keepalive_cnt = 0;
48 HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
49 uint32_t* diff_time_ptr = &last_time_keys[(*(int*)btn->arg) - '0'];
50 uint32_t diff_time = get_tick() - *diff_time_ptr;
51

52 /* This is for purpose of test and timing validation */
53 if (diff_time > 2000) {
54 diff_time = 0;
55 }
56 *diff_time_ptr = get_tick(); /* Set current date as last one */
57

58 /* Get event string */
59 if (0) {
60 #if LWBTN_CFG_USE_KEEPALIVE
61 } else if (evt == LWBTN_EVT_KEEPALIVE) {
62 s = "KEEPALIVE";
63 color = FOREGROUND_RED;
64 #endif /* LWBTN_CFG_USE_KEEPALIVE */
65 } else if (evt == LWBTN_EVT_ONPRESS) {
66 s = " ONPRESS";
67 color = FOREGROUND_GREEN;
68 } else if (evt == LWBTN_EVT_ONRELEASE) {
69 s = "ONRELEASE";
70 color = FOREGROUND_BLUE;
71 } else if (evt == LWBTN_EVT_ONCLICK) {
72 s = " ONCLICK";
73 color = FOREGROUND_RED | FOREGROUND_GREEN;
74 } else {
75 s = " UNKNOWN";
76 color = FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE;
77 }
78 #if LWBTN_CFG_USE_KEEPALIVE
79 keepalive_cnt = btn->keepalive.cnt;
80 #endif

(continues on next page)

5.2. User manual 15

LwBTN

(continued from previous page)

81 SetConsoleTextAttribute(hConsole, color);
82 printf("[%7u][%6u] CH: %c, evt: %s, keep-alive cnt: %3u, click cnt: %3u\r\n",␣

→˓(unsigned)get_tick(),
83 (unsigned)diff_time, *(int*)btn->arg, s, (unsigned)keepalive_cnt,␣

→˓(unsigned)btn->click.cnt);
84 SetConsoleTextAttribute(hConsole, FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_

→˓BLUE);
85 (void)lw;
86 }
87

88 /**
89 * \brief Example function
90 */
91 int
92 example_win32(void) {
93 uint32_t time_last;
94 printf("Application running\r\n");
95 QueryPerformanceFrequency(&freq);
96 QueryPerformanceCounter(&sys_start_time);
97

98 /* Define buttons */
99 lwbtn_init_ex(NULL, btns, sizeof(btns) / sizeof(btns[0]), prv_btn_get_state, prv_btn_

→˓event);
100

101 time_last = get_tick();
102 while (1) {
103 /* Process forever */
104 lwbtn_process_ex(NULL, get_tick());
105

106 /* Manually read button state */
107 #if LWBTN_CFG_GET_STATE_MODE == LWBTN_GET_STATE_MODE_MANUAL
108 for (size_t i = 0; i < sizeof(btns) / sizeof(btns[0]); ++i) {
109 lwbtn_set_btn_state(&btns[i], prv_btn_get_state(NULL, &btns[i]));
110 }
111 #endif /* LWBTN_CFG_GET_STATE_MODE == LWBTN_GET_STATE_MODE_MANUAL */
112

113 /* Check if specific button is active and do some action */
114 if (lwbtn_is_btn_active(&btns[0])) {
115 if ((get_tick() - time_last) > 200) {
116 time_last = get_tick();
117 printf("Button is active\r\n");
118 }
119 }
120

121 /* Artificial sleep to offload win process */
122 Sleep(5);
123 }
124 return 0;
125 }
126

127 /**
128 * \brief Get current tick in ms from start of program

(continues on next page)

16 Chapter 5. Table of contents

LwBTN

(continued from previous page)

129 * \return uint32_t: Tick in ms
130 */
131 static uint32_t
132 get_tick(void) {
133 LONGLONG ret;
134 LARGE_INTEGER now;
135

136 QueryPerformanceFrequency(&freq);
137 QueryPerformanceCounter(&now);
138 ret = now.QuadPart - sys_start_time.QuadPart;
139 return (uint32_t)((ret * 1000) / freq.QuadPart);
140 }

5.2.2 Input events

During button (or input if you will) lifetime, application can expect some of these events (but not limited to):

• LWBTN_EVT_ONPRESS event is sent to application whenever input goes from inactive to active state and minimum
debounce time passes by

• LWBTN_EVT_ONRELEASE event is sent to application whenever input sent onpress event prior to that and when
input goes from active to inactive state

• LWBTN_EVT_KEEPALIVE event is periodically sent between onpress and onrelease events

• LWBTN_EVT_ONCLICK event is sent after onrelease and only if active button state was within allowed window
for valid click event.

5.2.3 On-Press event

Onpress event is the first in a row when input is detected active. With nature of embedded systems and various buttons
connected to devices, it is necessary to filter out potential noise to ignore unintential multiple presses. This is done
by checking line to be at stable level for at least some minimum time, normally called debounce time, usually it takes
around 20ms.

Fig. 1: On-Press event trigger after minimum debounce time

5.2.4 On-Release event

Onrelease event is triggered immediately when input goes from active to inactive state, and only if onpress event has
been detected prior to that.

Fig. 2: On-Release event trigger

5.2. User manual 17

LwBTN

5.2.5 On-Click event

Onclick event is triggered after a combination of multiple events:

• Onpress event shall be detected properly, indicating button has been pressed

• Onrelease event shall be detected, indicating button has been released

• Time between onpress and onrelease events has to be within time window

When conditions are met, onclick event is sent, either immediately after onrelease or after certain timeout after onre-
lease event.

Fig. 3: Sequence for valid click event

A windows-test program demonstration of events is visible below.

Fig. 4: Click event test program

Second number for each line is a milliseconds difference between events. OnClick is reported approximately (windows
real-time issue) 400 ms after on-release event.

Tip: Timeout window between last onrelease event and onclick event is configurable

5.2.6 Multi-click events

Multi-click feature is where timeout for onclick event comes into play. Idea behind timeout feature is to allow multiple
presses and to only send onclick once for all presses, including the number of detected presses during that time. This
let’s the application to react only once with known number of presses. This eliminates the problem where in case of
double click trigger, you also receive single-click event, while you do not know yet, if second (or third) event will be
triggered after.

Note: Imagine having a button that toggles one light on single click and turns off all lights in a room on double click.
With timeout feature and single onclick notification, user will only receive the onclick once and will, based on the
consecutive presses number value, perform appropriate action if it was single or multi click.

Simplified diagram for multi-click, ignoring debounce time indicators, is below. cp indicates number of detected
consecutive onclick press events, to be reported in the final onclick event

Fig. 5: Multi-click event example - with 3 consecutive presses

A windows-test program demonstration of events is visible below.

Multi-click event with onclick event reported only after second press after minimum timeout of 400ms.

Note: Number of consecutive clicks can be upper-limited to the desired value.

18 Chapter 5. Table of contents

LwBTN

Fig. 6: Multi-click event test program

When user makes more (or equal) consecutive clicks than maximum, an onclick event is sent immediately after onre-
lease event for last detected click.

Fig. 7: Max number of onclick events, onclick is sent immediately after onrelease

There is no need to wait timeout expiration since upper clicks limit has been reached.

Tip: It is possible to control the behavior of onclick event (when consecutive number reaches maximum set value)
timing using LWBTN_CFG_CLICK_MAX_CONSECUTIVE_SEND_IMMEDIATELY configuration. When enabled, behavior
is as illustrated above. When disabled, onclick event it sent in timeout (or in case of new onpress), even if max allowed
clicks has been reached.

Illustration below shows what happens during multiple clicks

• Max number of consecutive clicks is 3

• User makes 4 consecutive clicks

Fig. 8: Multi-click events with too many clicks - consecutive send immediately is enabled - it is sent after 3rd onrelease

Image below illustrates when send immediately is enabled. It is visible how first onclick is sent just after onrelease
event (when max consecutive is set to 3).

When multi-click feature is disabled, onclick event is sent after every valid sequence of onpress and onrelease events.

Tip: If you do not want multi-click feature, set max number of consecutive clicks to 1. This will eliminate timeout
feature since every click event will trigger maximum clicks detected and therefore send the event immediately after
onrelease

Demo log text, with fast pressing of button, and events reported after every onrelease

5.2. User manual 19

LwBTN

Fig. 9: Multi-click events with too many clicks - consecutive send immediately is disabled

Fig. 10: 5 presses detected with 3 set as maximum. First on-click is sent immediately, while second is sent after timeout

5.2.7 Multi-click special case

There is currently a special case in the library when dealing with multiclicks. Configuration option
LWBTN_CFG_TIME_CLICK_MULTI_MAX defines the maximum time between 2 consecutive clicks (consecutive onre-
lease events). Timing starts with previous valid click. If next click event starts (that starts with onpress event) earlier
than maximum time but ends later than maximum, then new click is not counted as consecutive click to previous one.

As such, library will throw 2 click events to the user. First one immediately on second onrelease event (to take care of
first onpress and onrelease event group) and second one after defined user timeout.

Note: Colors on picture below indicate events that relate to each other, indicated as green or blue rectangles

5.2.8 Keep alive event

Keep-alive event is sent periodically between onpress and onrelease events. It can be used to detect application is still
alive and provides counter how many keep-alive events have been sent up to the point of event.

Feature can be used to make a trigger at specific time if button is in active state (a hold event).

5.2.9 Debounce

Debouncing is a software mechanics to remove unwanted bouncing events introduced by the physical buttons.

Tip: This chapter will not go into details about generic debouncing problem. Have a look at Wikipedia post about
Switches.

Library supports 2 separate debounce options:

• Debounce on press event: This is almost always a must-have in the application, and helps to detect valid “press”
event only once after the input is in stable active state for minimum time in a row.

Fig. 11: Multi-click events disabled with cp == 1

20 Chapter 5. Table of contents

https://en.wikipedia.org/wiki/Switch
https://en.wikipedia.org/wiki/Switch

LwBTN

Fig. 12: Multi-click events disabled with cp == 1

Fig. 13: Special case for multi click when timing overlaps. Orange vertical lines indicate period for valid consecutive
clicks.

Fig. 14: Keep alive events with 2 successful click events

Fig. 15: Keep alive events when button is kept pressed

5.2. User manual 21

LwBTN

Press event debounce can only be disabled, if application can ensure stable transition from inactive to
active state. This is usually done using capacitor and resistor next to the push button (this may not be
the most optimized solution for contact longevity)

• Debounce on release event: This is usually not necessary by most of the applications,

but can be used in harsh environments, where unwanted external noise could affect line and put it to
inactive state for short period of time (while user holds button down in active state).

Note: Configuration settings LWBTN_CFG_TIME_DEBOUNCE_PRESS and LWBTN_CFG_TIME_DEBOUNCE_RELEASE are
used to set the debounce time in milliseconds. When one of the values is set to 0, debounce feature for respective
transition is not actived.

Tip: Debounce time of around 20ms is usually a good tradeoff between application reactivity to user events and
debounce time required to stabilize the input.

Debounce examples

Examples are demonstrated using NUCLEO-L011K4 board. 2 GPIO pins are used, one in input config, second as
output.

• Input pin (Blue): A raw input that acts as an user button. There is no hardware filtering. Pin is active when low
and inactive when high.

• Output pin (Red): Output pin is software controlled. It goes high on press event and it goes low on release
event. Press and release events are reported by the library.

Note: Logic analyzer has been connected directly to the microcontroller pins.

Examples #1

• LWBTN_CFG_TIME_DEBOUNCE_PRESS = 20

• LWBTN_CFG_TIME_DEBOUNCE_RELEASE = 20

Fig. 16: 20ms debounce for press event. Press event is triggered only after input is stable in active state for minimum
time.

Examples #2

• LWBTN_CFG_TIME_DEBOUNCE_PRESS = 20

• LWBTN_CFG_TIME_DEBOUNCE_RELEASE = 0 - release debounce is disabled

22 Chapter 5. Table of contents

https://www.st.com/en/evaluation-tools/nucleo-l011k4.html

LwBTN

Fig. 17: 20ms debounce for release event. Release event is triggered only after input is stable in inactive state for
minimum time.

Fig. 18: 20ms debounce for press event - press event was not triggered - input was in stable active state for less than
minimum debounce time (red line stays low).

Fig. 19: Press event is detected after initial debounce, while release event is detected immediately on button going to
inactive state.

5.2. User manual 23

LwBTN

Examples #3

• LWBTN_CFG_TIME_DEBOUNCE_PRESS = 100

• LWBTN_CFG_TIME_DEBOUNCE_RELEASE = 100

Fig. 20: 100ms debounce for press event. Input bouncing is clearly visible on the diagram. Press event is triggered
only after input is stable in active state for minimum time.

Fig. 21: 100ms debounce for release event. Release event is triggered after input is in stable inactive state for at least
release debounce time.

Fig. 22: Input is in pressed state (red is high). Blue is in released state for less that minimum stable debounce time,
therefore no release event has been triggered. This is clearly visible with the red line that is staying high for the whole
time of the transient period.

24 Chapter 5. Table of contents

LwBTN

5.3 API reference

List of all the modules:

5.3.1 LwBTN

group LWBTN
Lightweight button manager.

Defines

lwbtn_init(btns, btns_cnt, get_state_fn, evt_fn) lwbtn_init_ex(NULL, btns, btns_cnt, get_state_fn, evt_fn)
Initialize LwBTN library with buttons on default button group.

See also:

lwbtn_init_ex

Parameters

• btns – [in] Array of buttons to process

• btns_cnt – [in] Number of buttons to process

• get_state_fn – [in] Pointer to function providing button state on demand.
Can be set to NULL if LWBTN_CFG_GET_STATE_MODE is NOT set to
LWBTN_GET_STATE_MODE_CALLBACK

• evt_fn – [in] Button event function callback

lwbtn_process(mstime) lwbtn_process_ex(NULL, mstime)
Periodically read button states and take appropriate actions. It processes the default buttons instance group.

See also:

lwbtn_process_ex

Parameters

• mstime – [in] Current system time in milliseconds

lwbtn_process_btn(btn, mstime) lwbtn_process_btn_ex(NULL, (btn), (mstime))
Process specific button in a default LwBTN instance.

Parameters

• btn – [in] Button instance to process

• mstime – [in] Current system time in milliseconds

5.3. API reference 25

LwBTN

Typedefs

typedef void (*lwbtn_evt_fn)(struct lwbtn *lwobj, struct lwbtn_btn *btn, lwbtn_evt_t evt)
Button event function callback prototype.

Param lwobj [in] LwBTN instance

Param btn [in] Button instance from array for which event occured

Param evt [in] Event type

typedef uint8_t (*lwbtn_get_state_fn)(struct lwbtn *lwobj, struct lwbtn_btn *btn)
Get button/input state callback function.

Param lwobj [in] LwBTN instance

Param btn [in] Button instance from array to read state

Return 1 when button is considered active, 0 otherwise

Enums

enum lwbtn_evt_t
List of button events.

Values:

enumerator LWBTN_EVT_ONPRESS = 0x00
On press event - sent when valid press is detected (after debounce if enabled)

enumerator LWBTN_EVT_ONRELEASE
On release event - sent when valid release event is detected (from active to inactive)

enumerator LWBTN_EVT_ONCLICK
On Click event - sent when valid sequence of on-press and on-release events occurs

enumerator LWBTN_EVT_KEEPALIVE
Keep alive event - sent periodically when button is active

Functions

uint8_t lwbtn_init_ex(lwbtn_t *lwobj, lwbtn_btn_t *btns, uint16_t btns_cnt, lwbtn_get_state_fn
get_state_fn, lwbtn_evt_fn evt_fn)

Initialize button manager.

Parameters

• lwobj – [in] LwBTN instance. Set to NULL to use default one

• btns – [in] Array of buttons to process

• btns_cnt – [in] Number of buttons to process

26 Chapter 5. Table of contents

LwBTN

• get_state_fn – [in] Pointer to function providing button state on demand. May be set to
NULL when LWBTN_CFG_GET_STATE_MODE is set to manual.

• evt_fn – [in] Button event function callback

Returns 1 on success, 0 otherwise

uint8_t lwbtn_process_ex(lwbtn_t *lwobj, uint32_t mstime)
Button processing function, that reads the inputs and makes actions accordingly.

It checks state of all the buttons, linked to the specific LwBTN instance (group).

Parameters

• lwobj – [in] LwBTN instance. Set to NULL to use default one

• mstime – [in] Current time in milliseconds

Returns 1 on success, 0 otherwise

uint8_t lwbtn_process_btn_ex(lwbtn_t *lwobj, lwbtn_btn_t *btn, uint32_t mstime)
Process single button instance from the specific LwOBJ instance (group).

This feature can be used if application wants to process the button events only when interrupt hits (as a
trigger). It gives user higher autonomy to decide which and when it will call specific button processing.

Parameters

• lwobj – [in] LwBTN instance. Set to NULL to use default one

• btn – [in] Button object. Must not be set to NULL.

• mstime – [in] Current time in milliseconds

Returns 1 on success, 0 otherwise

uint8_t lwbtn_set_btn_state(lwbtn_btn_t *btn, uint8_t state)
Set button state to either “active” or “inactive”.

Parameters

• btn – [in] Button instance

• state – [in] New button state. 1 is for active (pressed), 0 is for inactive (released).

Returns 1 on success, 0 otherwise

uint8_t lwbtn_is_btn_active(const lwbtn_btn_t *btn)
Check if button is active. Active is considered when initial debounce period has been a pass. This is the
period between on-press and on-release events.

Parameters btn – [in] Button handle to check

Returns 1 if active, 0 otherwise

struct lwbtn_argdata_port_pin_state_t
#include <lwbtn.h> Custom user argument data structure.

This is a simple pre-defined structure, that can be used by user to define most commonly required feature
in embedded systems, that being GPIO port, GPIO pin and state when button is considered active.

User can later attach this structure as argument to button structure

5.3. API reference 27

LwBTN

Public Members

void *port
User defined GPIO port information

void *pin
User defined GPIO pin information

uint8_t state
User defined GPIO state level when considered active

struct lwbtn_btn_t
#include <lwbtn.h> Button/input structure.

Public Members

uint16_t flags
Private button flags management

uint8_t curr_state
Current button state to be processed. It is used to keep track when application manually sets the button
state

uint8_t old_state
Old button state - 1 means active, 0 means inactive

uint32_t time_change
Time in ms when button state got changed last time after valid debounce

uint32_t time_state_change
Time in ms when button state got changed last time

uint32_t last_time
Time in ms of last send keep alive event

Time in ms of last successfully detected (not sent!) click event

uint16_t cnt
Number of keep alive events sent after successful on-press detection. Value is reset after on-release

struct lwbtn_btn_t::[anonymous] keepalive
Keep alive structure

uint8_t cnt
Number of consecutive clicks detected, respecting maximum timeout between clicks

28 Chapter 5. Table of contents

LwBTN

struct lwbtn_btn_t::[anonymous] click
Click event structure

void *arg
User defined custom argument for callback function purpose

uint16_t time_debounce
Debounce time in milliseconds

uint16_t time_debounce_release
Debounce time in milliseconds for release event

uint16_t time_click_pressed_min
Minimum pressed time for valid click event

uint16_t time_click_pressed_max
Maximum pressed time for valid click event

uint16_t time_click_multi_max
Maximum time between 2 clicks to be considered consecutive click

uint16_t time_keepalive_period
Time in ms for periodic keep alive event

uint16_t max_consecutive
Max number of consecutive clicks

struct lwbtn_t
#include <lwbtn.h> LwBTN group structure.

Public Members

lwbtn_btn_t *btns
Pointer to buttons array

uint16_t btns_cnt
Number of buttons in array

lwbtn_evt_fn evt_fn
Pointer to event function

lwbtn_get_state_fn get_state_fn
Pointer to get state function

5.3. API reference 29

LwBTN

5.3.2 Configuration

This is the default configuration of the middleware. When any of the settings shall be modified, it shall be done in
dedicated application config lwbtn_opts.h file.

Note: Check Getting started for guidelines on how to create and use configuration file.

group LWBTN_OPT
Default configuration setup.

Defines

LWBTN_CFG_USE_KEEPALIVE 1
Enables 1 or disables 0 periodic keep alive events.

Default keep alive period is set with LWBTN_CFG_TIME_KEEPALIVE_PERIOD macro

LWBTN_CFG_TIME_DEBOUNCE_PRESS 20
Minimum debounce time for press event in units of milliseconds.

This is the time when the input shall have stable active level to detect valid onpress event.

When value is set to > 0, input must be in active state for at least minimum milliseconds time, before valid
onpress event is detected.

To be safe not using this feature, external logic must ensure stable transition at input level.

Note: If value is set to 0, debounce is not used and press event will be triggered immediately when input
states goes to inactive state.

LWBTN_CFG_TIME_DEBOUNCE_PRESS_DYNAMIC 0
Enables 1 or disables 0 dynamic settable time debounce.

When enabled, additional field is added to button structure to allow each button setting its very own de-
bounce time for press event.

If not used, LWBTN_CFG_TIME_DEBOUNCE_PRESS is used as default debouncing configuration

LWBTN_CFG_TIME_DEBOUNCE_RELEASE 0
Minimum debounce time for release event in units of milliseconds.

This is the time when the input shall have minimum stable released level to detect valid onrelease event.

This setting can be useful if application wants to protect against unwanted glitches on the line when input
is considered “active”.

When value is set to > 0, input must be in inactive low for at least minimum milliseconds time, before valid
onrelease event is detected

30 Chapter 5. Table of contents

LwBTN

Note: If value is set to 0, debounce is not used and release event will be triggered immediately when input
states goes to inactive state

LWBTN_CFG_TIME_DEBOUNCE_RELEASE_DYNAMIC 0
Enables 1 or disables 0 dynamic settable time debounce for release event.

When enabled, additional field is added to button structure to allow each button setting its very own de-
bounce time for release event.

If not used, LWBTN_CFG_TIME_DEBOUNCE_RELEASE is used as default debouncing configuration

LWBTN_CFG_TIME_CLICK_MIN 20
Minimum active input time for valid click event, in milliseconds.

Input shall be pressed at least this amount of time to even consider the potential valid click event. Set the
value to 0 to disable this feature

LWBTN_CFG_TIME_CLICK_MIN_DYNAMIC 0
Enables 1 or disables 0 dynamic settable min time for click.

When enabled, additional field is added to button structure

LWBTN_CFG_TIME_CLICK_MAX 300
Maximum active input time for valid click event, in milliseconds.

Input shall be pressed at most this amount of time to still trigger valid click. Set to -1 to allow any time
triggering click event.

LWBTN_CFG_TIME_CLICK_MAX_DYNAMIC 0
Enables 1 or disables 0 dynamic settable max time for click.

When enabled, additional field is added to button structure

LWBTN_CFG_TIME_CLICK_MULTI_MAX 400
Maximum allowed time between last on-release and next valid on-press, to still allow multi-click events, in
milliseconds.

This value is also used as a timeout length. It sends onclick event if there is no further presses by the
application.

LWBTN_CFG_TIME_CLICK_MULTI_MAX_DYNAMIC 0
Enables 1 or disables 0 dynamic settable max time for multi click.

When enabled, additional field is added to button structure

LWBTN_CFG_CLICK_MAX_CONSECUTIVE 3
Maximum number of allowed consecutive click events, before structure gets reset to default value.

LWBTN_CFG_CLICK_MAX_CONSECUTIVE_DYNAMIC 0
Enables 1 or disables 0 dynamic settable max consecutive clicks.

When enabled, additional field is added to button structure

5.3. API reference 31

LwBTN

LWBTN_CFG_TIME_KEEPALIVE_PERIOD 100
Keep-alive event period, in milliseconds.

LWBTN_CFG_TIME_KEEPALIVE_PERIOD_DYNAMIC 0
Enables 1 or disables 0 dynamic settable keep alive period.

When enabled, additional field is added to button structure

LWBTN_CFG_CLICK_MAX_CONSECUTIVE_SEND_IMMEDIATELY 1
Enables 1 or disables 0 immediate onclick event after on-release event, if number of consecutive clicks
reaches max value.

When this mode is disabled, onclick is sent in one of 2 cases:

• An on-click timeout occurred

• Next on-press event occurred before timeout expired

LWBTN_GET_STATE_MODE_CALLBACK 0
Callback-only state mode

LWBTN_GET_STATE_MODE_MANUAL 1
Manual-only state mode

LWBTN_GET_STATE_MODE_CALLBACK_OR_MANUAL 2
Callback or manual state mode

LWBTN_CFG_GET_STATE_MODE LWBTN_GET_STATE_MODE_CALLBACK
Sets the mode how new button state is acquired.

Different modes are availale, set with the level number:

• LWBTN_GET_STATE_MODE_CALLBACK: State of the button is checked through get state callback func-
tion

• LWBTN_GET_STATE_MODE_MANUAL: Only manual state set is enabled. Application must set the button
state with API functions. Callback API is not used.

• LWBTN_GET_STATE_MODE_CALLBACK_OR_MANUAL: State of the button is checked through get state
callback function (by default). It enables API to manually set the state with approapriate function call.
Button state is checked with the callback at least until manual state API function is called.

This allows multiple build configurations for various button types

32 Chapter 5. Table of contents

LwBTN

5.4 Changelog

Changelog

Develop

v1.0.0

- Send `CLICK` event if there is an overlap between max time between clicks and new␣
→˓click arrives
- Do not send `CLICK` event if there was previously detected long hold press (hold time␣
→˓exceeded max allowed click time)

v0.0.2

- Add `LWBTN_CFG_GET_STATE_MODE` to control *get state* mode
- Add option to check if button is currently active (after debounce period has elapsed)
- Add option to set time/click parameters at run time for each button specifically
- Rename `_RUNTIME` configuration with `_DYNAMIC`
- Change `LWBTC_CFG_TIME_DEBOUNCE` to `LWBTC_CFG_TIME_DEBOUNCE_PRESS` and `LWBTC_CFG_
→˓TIME_DEBOUNCE_RUNTIME` to `LWBTC_CFG_TIME_DEBOUNCE_PRESS_DYNAMIC` respectively
- Add option release debounce with `LWBTC_CFG_TIME_DEBOUNCE_RELEASE` and `LWBTC_CFG_TIME_
→˓DEBOUNCE_RELEASE_DYNAMIC` options

v0.0.1

- First commit

5.4. Changelog 33

LwBTN

34 Chapter 5. Table of contents

INDEX

L
lwbtn_argdata_port_pin_state_t (C++ struct), 27
lwbtn_argdata_port_pin_state_t::pin (C++

member), 28
lwbtn_argdata_port_pin_state_t::port (C++

member), 28
lwbtn_argdata_port_pin_state_t::state (C++

member), 28
lwbtn_btn_t (C++ struct), 28
lwbtn_btn_t::arg (C++ member), 29
lwbtn_btn_t::click (C++ member), 28
lwbtn_btn_t::cnt (C++ member), 28
lwbtn_btn_t::curr_state (C++ member), 28
lwbtn_btn_t::flags (C++ member), 28
lwbtn_btn_t::keepalive (C++ member), 28
lwbtn_btn_t::last_time (C++ member), 28
lwbtn_btn_t::max_consecutive (C++ member), 29
lwbtn_btn_t::old_state (C++ member), 28
lwbtn_btn_t::time_change (C++ member), 28
lwbtn_btn_t::time_click_multi_max (C++ mem-

ber), 29
lwbtn_btn_t::time_click_pressed_max (C++

member), 29
lwbtn_btn_t::time_click_pressed_min (C++

member), 29
lwbtn_btn_t::time_debounce (C++ member), 29
lwbtn_btn_t::time_debounce_release (C++ mem-

ber), 29
lwbtn_btn_t::time_keepalive_period (C++ mem-

ber), 29
lwbtn_btn_t::time_state_change (C++ member),

28
LWBTN_CFG_CLICK_MAX_CONSECUTIVE (C macro), 31
LWBTN_CFG_CLICK_MAX_CONSECUTIVE_DYNAMIC (C

macro), 31
LWBTN_CFG_CLICK_MAX_CONSECUTIVE_SEND_IMMEDIATELY

(C macro), 32
LWBTN_CFG_GET_STATE_MODE (C macro), 32
LWBTN_CFG_TIME_CLICK_MAX (C macro), 31
LWBTN_CFG_TIME_CLICK_MAX_DYNAMIC (C macro), 31
LWBTN_CFG_TIME_CLICK_MIN (C macro), 31
LWBTN_CFG_TIME_CLICK_MIN_DYNAMIC (C macro), 31

LWBTN_CFG_TIME_CLICK_MULTI_MAX (C macro), 31
LWBTN_CFG_TIME_CLICK_MULTI_MAX_DYNAMIC (C

macro), 31
LWBTN_CFG_TIME_DEBOUNCE_PRESS (C macro), 30
LWBTN_CFG_TIME_DEBOUNCE_PRESS_DYNAMIC (C

macro), 30
LWBTN_CFG_TIME_DEBOUNCE_RELEASE (C macro), 30
LWBTN_CFG_TIME_DEBOUNCE_RELEASE_DYNAMIC (C

macro), 31
LWBTN_CFG_TIME_KEEPALIVE_PERIOD (C macro), 31
LWBTN_CFG_TIME_KEEPALIVE_PERIOD_DYNAMIC (C

macro), 32
LWBTN_CFG_USE_KEEPALIVE (C macro), 30
lwbtn_evt_fn (C++ type), 26
lwbtn_evt_t (C++ enum), 26
lwbtn_evt_t::LWBTN_EVT_KEEPALIVE (C++ enumer-

ator), 26
lwbtn_evt_t::LWBTN_EVT_ONCLICK (C++ enumera-

tor), 26
lwbtn_evt_t::LWBTN_EVT_ONPRESS (C++ enumera-

tor), 26
lwbtn_evt_t::LWBTN_EVT_ONRELEASE (C++ enumer-

ator), 26
lwbtn_get_state_fn (C++ type), 26
LWBTN_GET_STATE_MODE_CALLBACK (C macro), 32
LWBTN_GET_STATE_MODE_CALLBACK_OR_MANUAL (C

macro), 32
LWBTN_GET_STATE_MODE_MANUAL (C macro), 32
lwbtn_init (C macro), 25
lwbtn_init_ex (C++ function), 26
lwbtn_is_btn_active (C++ function), 27
lwbtn_process (C macro), 25
lwbtn_process_btn (C macro), 25
lwbtn_process_btn_ex (C++ function), 27
lwbtn_process_ex (C++ function), 27
lwbtn_set_btn_state (C++ function), 27
lwbtn_t (C++ struct), 29
lwbtn_t::btns (C++ member), 29
lwbtn_t::btns_cnt (C++ member), 29
lwbtn_t::evt_fn (C++ member), 29
lwbtn_t::get_state_fn (C++ member), 29

35

	Features
	Requirements
	Contribute
	License
	Table of contents
	Getting started
	Download library
	Download from releases
	Clone from Github
	First-time clone
	Update cloned to latest version

	Add library to project
	Configuration file

	User manual
	How it works
	Input events
	On-Press event
	On-Release event
	On-Click event
	Multi-click events
	Multi-click special case
	Keep alive event
	Debounce
	Debounce examples

	API reference
	LwBTN
	Configuration

	Changelog

	Index

