LwWGPS

Tilen MAJERLE

Jul 03, 2020






CONTENTS

1 Features 3
2 Requirements 5
3 Contribute 7
4 License 9
5 Table of contents 11
5.1 Getting started . . . . L. e e e e e e e e e e e e e 11
52 Usermanual . . . . . . . . . . e e e e e 13
53 APlreference . . . . . . . . e e e 16
54 Examplesanddemos . . . . . . ..o e e e e e e e e 22
Index 27







LwGPS

Welcome to the documentation for version latest-develop.

LwGPS is lightweight, platform independent library to parse NMEA statements from GPS receivers. It is highly
optimized for embedded systems.

Download library - Getting started - Open Github

CONTENTS 1


https://github.com/MaJerle/lwgps

LwGPS

2 CONTENTS



CHAPTER
ONE

FEATURES

Written in ANSI C99

Platform independent, easy to use

Built-in support for 4 GPS statements
— GPGGA or GNGGA: GPS fix data

GPGSA or GNGSA: GPS active satellites and dillusion of position

GPGSV or GNGSV: List of satellites in view zone

— GPRMC or GNRMC: Recommended minimum specific GPS/Transit data
Optional float or double floating point units

Low-level layer is separated from application layer, thus allows you to add custom communication with GPS
device

Works with operating systems
Works with different communication interfaces

User friendly MIT license




LwGPS

4 Chapter 1. Features



CHAPTER
TWO

REQUIREMENTS

* C compiler
* Driver for receiving data from GPS receiver

» Few kB of non-volatile memory




LwGPS

6 Chapter 2. Requirements



CHAPTER
THREE

CONTRIBUTE

Fresh contributions are always welcome. Simple instructions to proceed:

1. Fork Github repository

2. Respect C style & coding rules used by the library

3. Create a pull request to develop branch with new features or bug fixes
Alternatively you may:

1. Report a bug

2. Ask for a feature request



https://github.com/MaJerle/c-code-style

LwGPS

8 Chapter 3. Contribute



CHAPTER
FOUR

LICENSE

MIT License
Copyright (c) 2020 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.




LwGPS

10 Chapter 4. License



CHAPTER
FIVE

TABLE OF CONTENTS

5.1 Getting started

5.1.1 Download library

Library is primarly hosted on Github.
¢ Download latest release from releases area on Github

* Clone develop branch for latest development

Download from releases

All releases are available on Github releases area.

Clone from Github

First-time clone

* Download and install git if not already
* Open console and navigate to path in the system to clone repository to. Use command cd your_path
* Clone repository with one of available 3 options

— Run git clone —--recurse-submodules https://github.com/Maderle/lwgps com-
mand to clone entire repository, including submodules

— Run git clone —--recurse-submodules —--branch develop https://github.com/
MaJerle/lwgps to clone development branch, including submodules

— Run git clone —--recurse-submodules —--branch master https://github.com/
MaJerle/lwgps to clone latest stable branch, including submodules

* Navigate to examples directory and run favourite example

11


https://github.com/MaJerle/lwgps
https://github.com/MaJerle/lwgps/releases
https://github.com/MaJerle/lwgps/releases

20

21

LwGPS

Update cloned to latest version

* Open console and navigate to path in the system where your resources repository is. Use command cd
your_path

* Run git pull origin master —-recurse-submodules command to pull latest changes and to
fetch latest changes from submodules

* Rungit submodule foreach git pull origin master to update & merge all submodules

Note: This is preferred option to use when you want to evaluate library and run prepared examples. Repository
consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root
repository.

5.1.2 Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.
* Copy lwgps folder to your project
* Add 1wgps/src/include folder to include path of your toolchain
¢ Add source files from 1wgps/src/ folder to toolchain build

* Build the project

5.1.3 Minimal example code
Run below example to test and verify library

Listing 1: Test verification code

J ok k
* This example uses direct processing function
* to process dummy NMEA data from GPS receiver
*/

#include "lwgps/lwgps.h"

#include <string.h>

#include <stdio.h>

/+ GPS handle %/
lwgps_t hgps;

Ve
* \brief Dummy data from GPS receiver
*/

const char

gps_rx_datal] =

nn

"SGPRMC, 183729,A,3907.356,N,12102.482,wW,000.0,360.0,080301,015.5,E*6F\

—r\n"
"$GPRMBVAV rrrrrrrrrir Iv*7l\r\n"
"SGPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,, «75\r\
—n"
"SGPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0«3D\r\n"
"sGpGSv,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043, 35«71\
=\ (continues on next page)

12 Chapter 5. Table of contents




22

23

24

25

26

27

28

29

35

36

37

38

39

40

41

42

43

44

45

46

47

LwGPS

(continued from previous page)

"$GpPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43+«77\

—r\n"
"SPGRME, 22.0,M,52.9,M,51.0,M*14\r\n"
"$SGPGLL, 3907.360,N,12102.481,W,183730,Ax33\r\n"
"SPGRMZ, 2062, £, 3x2D\r\n"
"SPGRMM, WGS84x06\r\n"
"SGPBOD, , T, ,M,, *47\r\n"
"SGPRTE,1,1,c,0+x07\r\n"
"SGPRMC,183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,E*x67\
—r\n"
"$GPRMB,A,,,,,,,,,,,,V*7l\r\n";
int
main () {

/% Init GPS */
lwgps_init (&hgps) ;

/* Process all input data #*/
lwgps_process (&¢hgps, gps_rx_data, strlen(gps_rx_data));

/% Print messages */

printf ("vValid status: %d\r\n", hgps.is_valid);
printf ("Latitude: %f degrees\r\n", hgps.latitude);
printf ("Longitude: %f degrees\r\n", hgps.longitude);
printf ("Altitude: %f meters\r\n", hgps.altitude);

return 0O;

5.2 User manual

5.2.1 How it works
GPS NMEA Parser parses raw data formatted as NMEA 0183 statements from GPS receivers. It supports up to 4
different statements:

* GPGGA or GNGGA: GPS fix data

* GPGSA or GNGSA: GPS active satellites and dillusion of position

* GPGSV or GNGSV: List of satellites in view zone

* GPRMC or GNRMC: Recommended minimum specific GPS/Transit data

Tip: By changing different configuration options, it is possible to disable some statements. Check GPS Configuration
for more information.

Application must assure to properly receive data from GPS receiver. Usually GPS receivers communicate with host
embedded system with UART protocol and output directly formatted NMEA 0183 statements.

Note: Application must take care of properly receive data from GPS.

Application must use 1wgps_process () function for data processing. Function will:

5.2. User manual 13




LwGPS

* Detect statement type, such as GPGGA or GPGSV
* Parse all the terms of specific statement
* Check valid CRC after each statement
Programmer’s model is as following:
* Application receives data from GPS receiver
» Application sends data to Iwgps_process () function
* Application uses processed data to display altitude, latitude, longitude, and other parameters

Check Examples and demos for typical example

5.2.2 Float/double precision

With configuration of GSM_CFG_DOUBLE, it is possible to enable double floating point precision. All floating point
variables are then configured in double precision.

When configuration is set to 0, floating point variables are configured in single precision format.

Note: Single precision uses less memory in application. As a drawback, application may be a subject of data loss at
latter digits.

5.2.3 Thread safety

Library tends to be as simple as possible. No specific features have been implemented for thread safety.

When library is using multi-thread environment and if multi threads tend to access to shared resources, user must
resolve it with care, using mutual exclusion.

Tip: When single thread is dedicated for GPS processing, no special mutual exclusion is necessary.

5.2.4 Tests during development
During the development, test check is performed to validate raw NMEA input data vs expected result.

Listing 2: Test code for development

J/ *
* This example uses direct processing function,
* to process dummy NMEA data from GPS receiver
*/

#include <string.h>

#include <stdio.h>

#include "lwgps/lwgps.h"

#include "test_common.h"

/+ GPS handle %/
lwgps_t hgps;

(continues on next page)

14 Chapter 5. Table of contents




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

55

56

58

59

60

61

62

63

64

65

LwGPS

(continued from previous page)

J ok k

+ \brief

*/
const char
gps_rx_datal[] =

nn

Dummy data from GPS receiver

"S$SGPRMC, 183729,A,3907.356,N,12102.482,wW,000.0,360.0,080301,015.5,E*6F\

—r\n"

"$GPGGA, 183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,, *75\r\

—n"

"$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.

0%«3D\r\n"

"$GPGSv,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71\

—~r\n"

"$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43+«77\

—r\n"
nmw,
4

/%
* \brief
*/
void
run_tests () {
lwgps_init (&hgps) ;

/% Process all input data
lwgps_process (&hgps,

/* Run the test x/

RUN_TEST (! INT_IS_EQUAL (hgps.is_valid,
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (FLT_IS_EQUAL (hgps.
RUN_TEST (FLT_IS_EQUAL (hgps.
RUN_TEST (FLT_IS_EQUAL (hgps.
RUN_TEST (FLT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (FLT_IS_EQUAL (hgps.
RUN_TEST (FLT_IS_EQUAL (hgps.
(
(

RUN_TEST (FLT_IS_EQUAL (hgps

RUN_TEST (INT_IS_EQUAL (hgps.

RUN_TEST

RUN_TEST

RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.

RUN_TEST

RUN_TEST

RUN_TEST (INT_IS_EQUAL (hgps.

(INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
(INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.

(

(

(

(

(

(

INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
RUN_TEST (INT_IS_EQUAL (hgps.
INT_IS_EQUAL (hgps.

*/
gps_rx_data,

fix, 1));
fix_mode,
latitude,

longitude,

altitude,
course,
dop_p,
dop_h,
dop_v,
speed, O.
geo_sep,

e e

.variation,
sats_in_view,

sats_in_use,
satellites_ids
satellites_ids
satellites_ids[2],
satellites_ids
satellites_ids
satellites_ids
satellites_ids
satellites_ids
satellites_ids
satellites_ids
satellites_ids
satellites_ids

date,

8))i

Run the test of raw input data

/* Init GPS */

strlen(gps_rx_data));

0));

3))i
39.1226000000)) ;
-121.0413666666) ) ;
646.4000000000));

360.0000000000)) ;
.6000000000)) ;
.6000000000)) ;
.0000000000)) ;

0000000000)) ;
-24.100000000)) ;
15.500000000)) ;
8));

5))i

[
[
[
[
[
[
[
[
[
[
[1
(1

’

(continues on next page)

5.2. User manual

15




66

67

68

69

70

71

LwGPS

(continued from previous page)

RUN_TEST (INT_IS_EQUAL (hgps.

RUN_TEST

INT_IS_EQUAL (hgps.

hgps.

RUN_TEST (INT_IS_EQUAL (hgps.

RUN_TEST

(
(
RUN_TEST (INT_IS_EQUAL
(
(

(
(
(
(
(

INT_IS_EQUAL (hgps.

month, 3));
year, 1));
hours, 18));
minutes, 37)
30)

)
seconds, )

’

5.3 API reference

List of all the modules:

5.3.1 GPS NMEA Parser

group LWGPS
Lightweight GPS NMEA parser.

Defines

lwgps_is_valid(_gh)
Check if current GPS data contain valid signal.

Note LZWGPS_CFG_STATEMENT_GPRMC must be enabled and GPRMC statement must be sent from
GPS receiver
Return 1 on success, 0 otherwise

Parameters

e [in] _gh: GPS handle

Typedefs

typedef double lwgps_float_t
GPS float definition, can be either f1oat or double

Note Check for LWGPS_CFG_DOUBLE configuration

typedef void (*1wgps_process_£n) (lwgps_statement_t res)
Signature for caller-suplied callback function from gps_process.

Parameters

* [in] res: statement type of recently parsed statement

16 Chapter 5. Table of contents




LwGPS

Enums

enum lwgps_statement_t
ENUM of possible GPS statements parsed.
Values:

enumerator STAT UNKNOWN = (0
Unknown NMEA statement

enumerator STAT GGA=1
GPGGA statement

enumerator STAT_GSA =2
GPGSA statement

enumerator STAT GSV=3
GPGSYV statement

enumerator STAT_RMC =4
GPRMC statement

enumerator STAT UBX=35
UBX statement (uBlox specific)

enumerator STAT UBX TIME =6
UBX TIME statement (uBlox specific)

enumerator STAT CHECKSUM FAIL = UINT8_MAX
Special case, used when checksum fails

enum lwgps_speed_t
List of optional speed transformation from GPS values (in knots)

Values:

enumerator lwgps_speed kps
Kilometers per second

enumerator lwgps_speed_kph
Kilometers per hour

enumerator lwgps_speed mps
Meters per second

enumerator lwgps_speed_ mpm
Meters per minute

enumerator lwgps_speed mips
Miles per second

enumerator lwgps_speed mph
Miles per hour

enumerator lwgps_speed fps
Foots per second

enumerator lwgps_speed_fpm
Foots per minute

enumerator lwgps_speed_mpk
Minutes per kilometer

. API reference 17



LwGPS

enumerator lwgps_speed_spk
Seconds per kilometer

enumerator lwgps_speed splOOm
Seconds per 100 meters

enumerator lwgps_speed mipm
Minutes per mile

enumerator lwgps_speed_spm
Seconds per mile

enumerator lwgps_speed_splO0y
Seconds per 100 yards

enumerator lwgps_speed_smph
Sea miles per hour

Functions

uint8_t lwgps_init (lwgps_t *gh)
Init GPS handle.

Return 1 on success, 0 otherwise

Parameters

[in] gh: GPS handle structure

uint8_t lwgps_process (lwgps_t *gh, const void *data, size_t len, lwgps_process_fn evt_fn)
Process NMEA data from GPS receiver.

Return 1 on success, 0 otherwise

Parameters

[in] gh: GPS handle structure
[in] data: Received data
[in] len: Number of bytes to process

[in] evt_fn: Event function to notify application layer

uint8_t lwgps_distance_bearing (Iwgps_float_t las, Iwgps_float_t los, Iwgps_float t lae,

Iwgps_float_t loe, Iwgps_float_t *d, lwgps_float_t *b)

Calculate distance and bearing between 2 latitude and longitude coordinates.

Return 1 on success, 0 otherwise

Parameters

[in] las: Latitude start coordinate, in units of degrees
[in] los: Longitude start coordinate, in units of degrees
[in] lae: Latitude end coordinate, in units of degrees
[in] loe: Longitude end coordinate, in units of degrees

[out] d: Pointer to output distance in units of meters

18

Chapter 5. Table of contents



LwGPS

* [out] b: Pointer to output bearing between start and end coordinate in relation to north in units
of degrees

Iwgps_float_t 1wgps_to_speed (Iwgps_float_t sik, Iwgps_speed_t ts)
Convert NMEA GPS speed (in knots = nautical mile per hour) to different speed format.
Return Speed calculated from knots
Parameters
* [in] sik: Speed in knots, received from GPS NMEA statement
* [in] ts: Target speed to convert to from knots

struct lwgps_sat_t
#include <lwgps.h> Satellite descriptor.

Public Members
uint8_t num
Satellite number

uint8_t elevation
Elevation value

uintl6_t azimuth
Azimuth in degrees

uint8_t snr
Signal-to-noise ratio

struct lwgps_t
#include <lwgps.h> GPS main structure.

Public Members
Iwgps_float_t latitude
Latitude in units of degrees

Iwgps_float_t longitude
Longitude in units of degrees

Iwgps_float_t altitude
Altitude in units of meters

Iwgps_float_t geo_sep
Geoid separation in units of meters

uint8_t sats_in_use
Number of satellites in use

uint8_t £ix
Fix status. 0 =invalid, 1 = GPS fix, 2 = DGPS fix, 3 = PPS fix

uint8_t hours
Hours in UTC

uint§_t minutes
Minutes in UTC

5.3. API reference 19



LwGPS

uint8_t seconds
Seconds in UTC

Iwgps_float_t dop_h
Dolution of precision, horizontal

lwgps_float_t dop_w
Dolution of precision, vertical

Iwgps_float_t dop_p
Dolution of precision, position

uint8_t £fix mode
Fix mode. 1 = NO fix, 2 = 2D fix, 3 = 3D fix

uint8_t satellites_ids[12]
List of satellite IDs in use. Valid range is 0 to sats_in_use

uint8 t sats_in_ view
Number of satellites in view

lwgps_sat_t sats_in_view_desc[12]

uint8_t is_valid
GPS valid status

lwgps_float_t speed
Ground speed in knots

Iwgps_float_t course
Ground coarse

Iwgps_float_t variation
Magnetic variation

uint8_t date
Fix date

uint8_t month
Fix month

uint§_t year
Fix year
lwgps_float_t utc_tow
UTC TimeOfWeek, eg 113851.00

uintl6_t utec_wk
UTC week number, continues beyond 1023

uint8_t leap_sec
UTC leap seconds; UTC + leap_sec = TAI

uint32_t ¢lk_bias
Receiver clock bias, eg 1930035

lwgps_float_t clk_drift
Receiver clock drift, eg -2660.664

uint32_t tp_gran
Time pulse granularity, eg 43

20

Chapter 5. Table of contents



LwGPS

5.3.2 GPS Configuration
This is the default configuration of the middleware. When any of the settings shall be modified, it shall be done in
library header file, lwgps/src/include/lwgps/lwgps.h

group LWGPS_CONFIG
Default configuration setup.

Defines

LWGPS_CFG_DOUBLE
Enables 1 or disables 0 double precision for floating point values such as latitude, longitude, alti-
tude.

double is used as variable type when enabled, £1oat when disabled.
LWGPS_CFG_STATUS
Enables 1 or disables 0 status reporting callback by /wgps_process.

Note This is an extension, so not enabled by default.

LWGPS_CFG_STATEMENT_GPGGA
Enables 1 or disables O GGA statement parsing.
Note This statement must be enabled to parse:
 Latitude, Longitude, Altitude
e Number of satellites in use, fix (no fix, GPS, DGPS), UTC time
LWGPS_CFG_STATEMENT_ GPGSA
Enables 1 or disables 0 GSA statement parsing.
Note This statement must be enabled to parse:
* Position/Vertical/Horizontal dilution of precision
* Fix mode (no fix, 2D, 3D fix)
* IDs of satellites in use
LWGPS_CFG_STATEMENT_GPRMC
Enables 1 or disables 0 RMC statement parsing.
Note This statement must be enabled to parse:
* Validity of GPS signal
* Ground speed in knots and coarse in degrees
* Magnetic variation
e UTC date
LWGPS_CFG_STATEMENT_GPGSV
Enables 1 or disables 0 GSV statement parsing.
Note This statement must be enabled to parse:

¢ Number of satellites in view

5.3. API reference 21



LwGPS

* Optional details of each satellite in view. See LWGPS_CFG_STATEMENT _GPGSV_SAT_DET

LWGPS_CFG_STATEMENT_GPGSV_SAT_DET
Enables 1 or disables 0 detailed parsing of each satellite in view for GSV statement.

Note When this feature is disabled, only number of “satellites in view” is parsed
LWGPS_CFG_STATEMENT_PUBX

Enables 1 or disables O parsing and generation of PUBX (uBlox) messages.

PUBX are a nonstandard ublox-specific extensions, so disabled by default.

LWGPS_CFG_STATEMENT_PUBX TIME
Enables 1 or disables 0 parsing and generation of PUBX (uBlox) TIME messages.

This is a nonstandard ublox-specific extension, so disabled by default.
Note TIME messages can be used to obtain:

* UTC time of week

* UTC week number

* Leap seconds (allows conversion to eg. TAI)

This configure option requires LWGPS_CFG_STATEMENT_PUBX

5.4 Examples and demos

There are 2 very basic examples provided with the library.

5.4.1 Parse block of data

In this example, block of data is prepared as big string array and sent to processing function in single shot. Application
can then check if GPS signal has been detected as valid and use other data accordingly.

Listing 3: Minimum example code

J ok k
* This example uses direct processing function
* to process dummy NMEA data from GPS receiver
*/

#include "lwgps/lwgps.h"

#include <string.h>

#include <stdio.h>

/* GPS handle %/
lwgps_t hgps;

Ve
* \brief Dummy data from GPS receiver
*/
const char
gps_rx_datal[] = ""
"SGPRMC,183729,A4,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F\
—~r\n"
"SGPRMB, 2, ;s rrrrrrrre,Ve71\r\n"

(continues on next page)

22 Chapter 5. Table of contents




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

LwGPS

(continued from previous page)

"$SGPGGA, 183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,, »75\r\

—n"
"SGPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0«3D\r\n"
"sGpPGSvV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35%71\
<r\n"
"sGpGSv,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77\
—r\n"
"SPGRME, 22.0,M,52.9,M,51.0,Mx14\r\n"
"SGPGLL,3907.360,N,12102.481,W,183730,A%x33\r\n"
"S$SPGRMZ, 2062, £, 3x2D\r\n"
"SPGRMM, WGS84x06\r\n"
"SGPBOD, , T, ,M,, x47\r\n"
"SGPRTE,1,1,c,0x07\r\n"
"SGPRMC, 183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,Ex67\
—~r\n"
"SGPRMB, 2, ,,,rrrrrrs,Ve11\r\n";
int
main () {

/+ Init GPS */
lwgps_init (&¢hgps) ;

/#* Process all input data */
lwgps_process (&hgps, gps_rx_data, strlen(gps_rx_data));

/% Print messages x/

printf ("Valid status: %d\r\n", hgps.is_valid);
printf ("Latitude: %f degrees\r\n", hgps.latitude);
printf ("Longitude: %f degrees\r\n", hgps.longitude);
printf ("Altitude: %f meters\r\n", hgps.altitude);

return 0;

5.4.2 Parse received data from interrupt/DMA

Second example is a typical use case with interrupts on embedded systems. For each received character, application
uses ringbuff as intermediate buffer. Data are later processed outside interrupt context.

Note: For the sake of this example, application implements interrupts as function call in while loop.

Listing 4: Example of buffer

#include "lwgps/lwgps.h"
#include "lwrb/lwrb.h"
#include <string.h>

/+ GPS handle x/
lwgps_t hagps;

/% GPS buffer =/
lwrb_t hgps_buff;
uint8_t hgps_buff_datal[l2];

(continues on next page)

5.4. Examples and demos 23




20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

LwGPS

(continued from previous page)

/%

* \brief

* \note

*/
const char
gps_rx_datall

—~r\n"

—n"

—~r\n"

<r\n"

—r\n"

static

Dummy data from GPS receiver
This data are used to fake UART receive event on microcontroller

wn

"$GPRMC, 183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,Ex6F\

"$GPRMB!A! rrrrrrrrrr Iv*71\r\n"
"$GPGGA, 183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M, , x75\r\

"$SGPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0+3D\r\n"
"$GPGSv,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71\

"$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43%77\

"SPGRME, 22.0,M,52.9,M,51.0,Mx14\r\n"

"$SGPGLL, 3907.360,N,12102.481,W,183730,Ax33\r\n"
"SPGRMZ, 2062, £, 3x2D\r\n"

"SPGRMM, WGS84x06\r\n"

"$GPBOD,,T,,M,, *47\r\n"

"SGPRTE, 1,1,c,0x07\r\n"

"$SGPRMC, 183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,Ex67\

"SGPRMB, R,y sy srrrrs V*¥T1INE\D";

size_t write_ptr;

static void uart_irghandler (void) ;

int
main () {

uint8_t rx;

/#* Init GPS

*/

lwgps_init (&hgps) ;

/+ Create buffer for received data =/

lwrb_init (¢hgps_buff, hgps_buff_data,

while (1)

{

sizeof (hgps_buff_data));

/+ Add new character to buffer */
/* Fake UART interrupt handler on host microcontroller =/
uvart_irghandler();

/+ Process all input data =/
/* Read from buffer byte-by-byte and call processing function x/

if (lwrb_get_full (¢hgps_buff)) {
while

}

} else {

/#* Check if anything in buffer now */
1)y == 1) |
/+ Process byte-by-byte */

(lwrb_read (&¢hgps_buff,
lwgps_process (&¢hgps, &rx,

&rx,
1);

/+ Print all data after successful processing =*/

printf ("Latitude:
printf ("Longitude:
printf ("Altitude:

%f degrees\r\n", hgps.latitude);
%f degrees\r\n", hgps.longitude);
%f meters\r\n", hgps.altitude);

break;

(continues on next page)

24

Chapter 5. Table of contents




63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

LwGPS

(continued from previous page)

return 0;

VEE:
* \brief Interrupt handler routing for UART received character
* \note This 1s not real MCU, it is software method, called from main
*/

static void
uart_irghandler (void) {
/#+ Make interrupt handler as fast as possible #*/
/* Only write to received buffer and process later x/
if (write_ptr < strlen(gps_rx_data)) {
/* Write to buffer only */
lwrb_write (&¢hgps_buff, &gps_rx_datalwrite_ptr], 1);
++write_ptr;

5.4. Examples and demos

25




LwGPS

26

Chapter 5. Table of contents



L

LWGPS_CFG_DOUBLE (C macro), 21

LWGPS_CFG_STATEMENT_GPGGA (C macro), 21

LWGPS_CFG_STATEMENT_GPGSA (C macro), 21

LWGPS_CFG_STATEMENT_GPGSV (C macro), 21

LWGPS_CFG_STATEMENT_GPGSV_SAT_DET c
macro), 22

LWGPS_CFG_STATEMENT_GPRMC (C macro), 21

LWGPS_CFG_STATEMENT_PUBX (C macro), 22

LWGPS_CFG_STATEMENT_PUBX_TIME (C macro),
22

LWGPS_CFG_STATUS (C macro), 21

lwgps_distance_bearing (C++ function), 18

lwgps_£float_t (C++ type), 16

lwgps_init (C++ function), 18

lwgps_is_valid (C macro), 16

lwgps_process (C++ function), 18

lwgps_process_fn (C++ type), 16

lwgps_sat_t (C++ struct), 19

lwgps_sat_t::azimuth (C++ member), 19

lwgps_sat_t::elevation (C++ member), 19

lwgps_sat_t: :num (C++ member), 19

lwgps_sat_t: :snr (C++ member), 19

lwgps_speed_t (C++ enum), 17

lwgps_speed_t::1lwgps_speed_fpm (C++ enu-
merator), 17

lwgps_speed_t: :1lwgps_speed_fps (C++ enu-
merator), 17

lwgps_speed_t: :1lwgps_speed_kph (C++ enu-
merator), 17

lwgps_speed_t: :1lwgps_speed_kps (C++ enu-
merator), 17

lwgps_speed_t::1lwgps_speed_mipm (C++
enumerator), 18
lwgps_speed_t::1lwgps_speed_mips (C++

enumerator), 17
lwgps_speed_t: :1lwgps_speed_mph (C++ enu-
merator), 17
lwgps_speed_t::1lwgps_speed_mpk (C++ enu-
merator), 17
lwgps_speed_t::1lwgps_speed_mpm (C++ enu-
merator), 17

INDEX

lwgps_speed_t::1lwgps_speed_mps (C++ enu-
merator), 17
lwgps_speed_t::1lwgps_speed_smph
enumerator), 18
lwgps_speed_t::1lwgps_speed_spl00m (C++
enumerator), 18
lwgps_speed_t::1lwgps_speed_spl00y (C++
enumerator), 18
lwgps_speed_t::1lwgps_speed_spk (C++ enu-
merator), 17
lwgps_speed_t::1lwgps_speed_spm (C++ enu-
merator), 18
lwgps_statement_t (C++ enum), 17
lwgps_statement_t::STAT_CHECKSUM_FAIL
(C++ enumerator), 17
lwgps_statement_t::STAT_GGA (C++ enumera-

(C++

tor), 17
lwgps_statement_t::STAT_GSA (C++ enumera-
tor), 17
lwgps_statement_t::STAT_GSV (C++ enumera-
tor), 17
lwgps_statement_t::STAT_RMC (C++ enumera-
tor), 17
lwgps_statement_t::STAT_UBX (C++ enumera-
tor), 17
lwgps_statement_t::STAT_UBX_TIME (C++
enumerator), 17
lwgps_statement_t::STAT_UNKNOWN (C++

enumerator), 17
lwgps_t (C++ struct), 19
lwgps_t::altitude (C++ member), 19
lwgps_t::clk_bias (C++ member), 20
lwgps_t::clk_drift (C++ member), 20
lwgps_t: :course (C++ member), 20
lwgps_t: :date (C++ member), 20
lwgps_t: :dop_h (C++ member), 20
lwgps_t: :dop_p (C++ member), 20
lwgps_t: :dop_v (C++ member), 20
lwgps_t::fix (C++ member), 19
lwgps_t::fix_mode (C++ member), 20
lwgps_t: :geo_sep (C++ member), 19
lwgps_t: :hours (C++ member), 19

27



LwGPS

lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::

20
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::
lwgps_t::

is_valid (C++ member), 20
latitude (C++ member), 19
leap_sec (C++ member), 20
longitude (C++ member), 19
minutes (C++ member), 19

month (C++ member), 20
satellites_ids (C++ member), 20
sats_in_use (C++ member), 19
sats_in_view (C++ member), 20
sats_in_view_desc (C++ member),

seconds (C++ member), 19
speed (C++ member), 20
tp_gran (C++ member), 20
utc_tow (C++ member), 20
utc_wk (C++ member), 20
variation (C++ member), 20
year (C++ member), 20

lwgps_to_speed (C++ function), 19

28

Index



	Features
	Requirements
	Contribute
	License
	Table of contents
	Getting started
	User manual
	API reference
	Examples and demos

	Index

