

LwGPS v2.2.0 documentation

Welcome to the documentation for version v2.2.0.

LwGPS is lightweight, platform independent library to parse NMEA statements from GPS receivers. It is highly optimized for embedded systems.

[image: _images/logo.svg]Download library Getting started Open Github [https://github.com/MaJerle/lwgps] Donate [https://paypal.me/tilz0R]

Features

	Written in C (C11)

	Platform independent, easy to use

	Built-in support for 4 GPS statements

	GPGGA or GNGGA: GPS fix data

	GPGSA or GNGSA: GPS active satellites and dillusion of position

	GPGSV or GNGSV: List of satellites in view zone

	GPRMC or GNRMC: Recommended minimum specific GPS/Transit data

	Optional float or double floating point units

	Low-level layer is separated from application layer, thus allows you to add custom communication with GPS device

	Works with operating systems

	Works with different communication interfaces

	User friendly MIT license

Requirements

	C compiler

	Driver for receiving data from GPS receiver

	Few kB of non-volatile memory

Contribute

Fresh contributions are always welcome. Simple instructions to proceed:

	Fork Github repository

	Respect C style & coding rules [https://github.com/MaJerle/c-code-style] used by the library

	Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

	Report a bug

	Ask for a feature request

License

MIT License

Copyright (c) 2023 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Table of contents

Contents

	LwGPS v2.2.0 documentation

	Getting started
	Download library

	Add library to project

	Configuration file

	Minimal example code

	User manual
	How it works

	Float/double precision

	Thread safety

	NMEA data refresh

	Tests during development

	API reference
	LwGPS

	Configuration

	Examples and demos
	Parse block of data

	Parse received data from interrupt/DMA

	Distance and bearing

	Changelog

Getting started

Getting started may be the most challenging part of every new library.
This guide is describing how to start with the library quickly and effectively

Download library

Library is primarly hosted on Github [https://github.com/MaJerle/lwgps].

You can get it by:

	Downloading latest release from releases area [https://github.com/MaJerle/lwgps/releases] on Github

	Cloning main branch for latest stable version

	Cloning develop branch for latest development

Download from releases

All releases are available on Github releases area [https://github.com/MaJerle/lwgps/releases].

Clone from Github

First-time clone

This is used when you do not have yet local copy on your machine.

	Make sure git is installed.

	Open console and navigate to path in the system to clone repository to. Use command cd your_path

	Clone repository with one of available options below

	Run git clone --recurse-submodules https://github.com/MaJerle/lwgps command to clone entire repository, including submodules

	Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/lwgps to clone development branch, including submodules

	Run git clone --recurse-submodules --branch main https://github.com/MaJerle/lwgps to clone latest stable branch, including submodules

	Navigate to examples directory and run favourite example

Update cloned to latest version

	Open console and navigate to path in the system where your repository is located. Use command cd your_path

	Run git pull origin main command to get latest changes on main branch

	Run git pull origin develop command to get latest changes on develop branch

	Run git submodule update --init --remote to update submodules to latest version

Note

This is preferred option to use when you want to evaluate library and run prepared examples.
Repository consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root repository.

Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.
Next step is to add the library to the project, by means of source files to compiler inputs and header files in search path

	Copy lwgps folder to your project, it contains library files

	Add lwgps/src/include folder to include path of your toolchain. This is where C/C++ compiler can find the files during compilation process. Usually using -I flag

	Add source files from lwgps/src/ folder to toolchain build. These files are built by C/C++ compiler. CMake configuration comes with the library, allows users to include library in the project as subdirectory and library.

	Copy lwgps/src/include/lwgps/lwgps_opts_template.h to project folder and rename it to lwgps_opts.h

	Build the project

Configuration file

Configuration file is used to overwrite default settings defined for the essential use case.
Library comes with template config file, which can be modified according to needs.
and it should be copied (or simply renamed in-place) and named lwgps_opts.h

Note

Default configuration template file location: lwgps/src/include/lwgps/lwgps_opts_template.h.
File must be renamed to lwgps_opts.h first and then copied to the project directory where compiler
include paths have access to it by using #include "lwgps_opts.h".

List of configuration options are available in the Configuration section.
If any option is about to be modified, it should be done in configuration file

Template configuration file

 1/**
 2 * \file lwgps_opts_template.h
 3 * \brief LwGPS configuration file
 4 */
 5
 6/*
 7 * Copyright (c) 2023 Tilen MAJERLE
 8 *
 9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwGPS - Lightweight GPS NMEA parser library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v2.2.0
33 */
34#ifndef LWGPS_OPTS_HDR_H
35#define LWGPS_OPTS_HDR_H
36
37/* Rename this file to "lwgps_opts.h" for your application */
38
39/*
40 * Open "include/lwgps/lwgps_opt.h" and
41 * copy & replace here settings you want to change values
42 */
43
44#endif /* LWGPS_OPTS_HDR_H */

Note

If you prefer to avoid using configuration file, application must define
a global symbol LWGPS_IGNORE_USER_OPTS, visible across entire application.
This can be achieved with -D compiler option.

Minimal example code

To verify proper library setup, minimal example has been prepared.
Run it in your main application file to verify its proper execution

Absolute minimum example

 1/**
 2 * This example uses direct processing function
 3 * to process dummy NMEA data from GPS receiver
 4 */
 5#include <string.h>
 6#include <stdio.h>
 7#include "lwgps/lwgps.h"
 8
 9/* GPS handle */
10lwgps_t hgps;
11
12/**
13 * \brief Dummy data from GPS receiver
14 */
15const char gps_rx_data[] = ""
16 "$GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F\r\n"
17 "$GPRMB,A,,,,,,,,,,,,V*71\r\n"
18 "$GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75\r\n"
19 "$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D\r\n"
20 "$GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71\r\n"
21 "$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77\r\n"
22 "$PGRME,22.0,M,52.9,M,51.0,M*14\r\n"
23 "$GPGLL,3907.360,N,12102.481,W,183730,A*33\r\n"
24 "$PGRMZ,2062,f,3*2D\r\n"
25 "$PGRMM,WGS84*06\r\n"
26 "$GPBOD,,T,,M,,*47\r\n"
27 "$GPRTE,1,1,c,0*07\r\n"
28 "$GPRMC,183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,E*67\r\n"
29 "$GPRMB,A,,,,,,,,,,,,V*71\r\n";
30
31int
32main() {
33 /* Init GPS */
34 lwgps_init(&hgps);
35
36 /* Process all input data */
37 lwgps_process(&hgps, gps_rx_data, strlen(gps_rx_data));
38
39 /* Print messages */
40 printf("Valid status: %d\r\n", hgps.is_valid);
41 printf("Latitude: %f degrees\r\n", hgps.latitude);
42 printf("Longitude: %f degrees\r\n", hgps.longitude);
43 printf("Altitude: %f meters\r\n", hgps.altitude);
44
45 return 0;
46}

User manual

	How it works

	Float/double precision

	Thread safety

	NMEA data refresh
	Common approach

	Tests during development

How it works

LwGPS parses raw data formatted as NMEA 0183 statements from GPS receivers. It supports up to 4 different statements:

	GPGGA or GNGGA: GPS fix data

	GPGSA or GNGSA: GPS active satellites and dillusion of position

	GPGSV or GNGSV: List of satellites in view zone

	GPRMC or GNRMC: Recommended minimum specific GPS/Transit data

Tip

By changing different configuration options, it is possible to disable some statements.
Check Configuration for more information.

Application must assure to properly receive data from GPS receiver.
Usually GPS receivers communicate with host embedded system with UART protocol and output directly formatted NMEA 0183 statements.

Note

Application must take care of properly receive data from GPS.

Application must use lwgps_process() function for data processing. Function will:

	Detect statement type, such as GPGGA or GPGSV

	Parse all the terms of specific statement

	Check valid CRC after each statement

Programmer’s model is as following:

	Application receives data from GPS receiver

	Application sends data to lwgps_process() function

	Application uses processed data to display altitude, latitude, longitude, and other parameters

Check Examples and demos for typical example

Float/double precision

With configuration of GSM_CFG_DOUBLE, it is possible to enable double floating point precision.
All floating point variables are then configured in double precision.

When configuration is set to 0, floating point variables are configured in single precision format.

Note

Single precision uses less memory in application. As a drawback, application may be a subject of data loss at latter digits.

Thread safety

Library tends to be as simple as possible.
No specific features have been implemented for thread safety.

When library is using multi-thread environment and if multi threads tend to access to shared resources,
user must resolve it with care, using mutual exclusion.

Tip

When single thread is dedicated for GPS processing, no special mutual exclusion is necessary.

NMEA data refresh

LwGPS is designed to parse standard NMEA output from GPS module.

Tip

You can read more about NMEA 0183 here [https://en.wikipedia.org/wiki/NMEA_0183].

GPS module outputs several NMEA statements periodically, for instance once a second. In rare cases, outputs can be even every 100ms.
The common problem we try to solve is what happens if application tries to access GPS parsed data, while library processed only part of
new NMEA statement.

Depending on the application requirements, it is necessary to make sure data used by the application are all from the single NMEA output packet,
and not split between different ones. Below are 2 examples of several statements GPS module will output every second.

First statement at any given time:
$GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F
$GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75
$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D
$GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71
$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77

New statement after one second:
$GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F
$GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75
$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D
$GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71
$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77

If application manages to check GPS parsed data after first packet has been processed and second didn’t arrive yet, there is no issue.
Application parsed data are all belonging to single packet, at specific time.

But what would happen if application starts using GPS data while GPGGA packet is being received for second time?

	Application has new GPRMC information, from new packet

	Application still keeps GPGGA, GPGSA and GPGSV data from old packets

This could be a major issue for some applications. Time, speed and position do not match anymore.

Common approach

A common approach to this is to have a source of time in the application.
A set of timeouts could determine if packet has just started, or has just been completed and is now fully filled with new data.

An algorithm would be, assuming GPS sends packet data every 1 second:

	When character comes, if time of previous character is greater than maximum time between 2 characters (let’s say 10ms, even if this is a lot), this is probably start of new packet.

	If new time is >10ms since last received character, it was probably the last character.

	Application can now use new data

	Application goes to wait new packet mode

	Go back to step nr.1

Tests during development

During the development, test check is performed to validate raw NMEA input data vs expected result.

Test code for development

 1/*
 2 * This example uses direct processing function,
 3 * to process dummy NMEA data from GPS receiver
 4 */
 5#include <stdio.h>
 6#include <string.h>
 7#include "lwgps/lwgps.h"
 8#include "test_common.h"
 9
10/* GPS handle */
11lwgps_t hgps;
12
13/**
14 * \brief Dummy data from GPS receiver
15 */
16const char gps_rx_data[] = ""
17 "$GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F\r\n"
18 "$GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75\r\n"
19 "$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D\r\n"
20 "$GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71\r\n"
21 "$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77\r\n"
22 "";
23
24/**
25 * \brief Run the test of raw input data
26 */
27void
28run_tests() {
29 lwgps_init(&hgps); /* Init GPS */
30
31 /* Process all input data */
32 lwgps_process(&hgps, gps_rx_data, strlen(gps_rx_data));
33
34 /* Run the test */
35 RUN_TEST(!INT_IS_EQUAL(hgps.is_valid, 0));
36 RUN_TEST(INT_IS_EQUAL(hgps.fix, 1));
37 RUN_TEST(INT_IS_EQUAL(hgps.fix_mode, 3));
38 RUN_TEST(FLT_IS_EQUAL(hgps.latitude, 39.1226000000));
39 RUN_TEST(FLT_IS_EQUAL(hgps.longitude, -121.0413666666));
40 RUN_TEST(FLT_IS_EQUAL(hgps.altitude, 646.4000000000));
41 RUN_TEST(FLT_IS_EQUAL(hgps.course, 360.0000000000));
42 RUN_TEST(INT_IS_EQUAL(hgps.dop_p, 1.6000000000));
43 RUN_TEST(INT_IS_EQUAL(hgps.dop_h, 1.6000000000));
44 RUN_TEST(INT_IS_EQUAL(hgps.dop_v, 1.0000000000));
45 RUN_TEST(FLT_IS_EQUAL(hgps.speed, 0.0000000000));
46 RUN_TEST(FLT_IS_EQUAL(hgps.geo_sep, -24.100000000));
47 RUN_TEST(FLT_IS_EQUAL(hgps.variation, 15.500000000));
48 RUN_TEST(INT_IS_EQUAL(hgps.sats_in_view, 8));
49
50 RUN_TEST(INT_IS_EQUAL(hgps.sats_in_use, 5));
51 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[0], 2));
52 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[1], 0));
53 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[2], 0));
54 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[3], 7));
55 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[4], 0));
56 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[5], 9));
57 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[6], 24));
58 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[7], 26));
59 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[8], 0));
60 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[9], 0));
61 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[10], 0));
62 RUN_TEST(INT_IS_EQUAL(hgps.satellites_ids[11], 0));
63
64 RUN_TEST(INT_IS_EQUAL(hgps.date, 8));
65 RUN_TEST(INT_IS_EQUAL(hgps.month, 3));
66 RUN_TEST(INT_IS_EQUAL(hgps.year, 1));
67 RUN_TEST(INT_IS_EQUAL(hgps.hours, 18));
68 RUN_TEST(INT_IS_EQUAL(hgps.minutes, 37));
69 RUN_TEST(INT_IS_EQUAL(hgps.seconds, 30));
70}

API reference

List of all the modules:

	LwGPS

	Configuration

LwGPS

	
group LWGPS

	Lightweight GPS NMEA parser.

Defines

	
lwgps_speed_kps

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_kph

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_mps

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_mpm

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_mips

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_mph

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_fps

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_fpm

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_mpk

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_spk

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_sp100m

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_mipm

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_spm

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_sp100y

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_speed_smph

	Backward compatibility.
	
Deprecated:

	Use lwgps_speed_t instead

	
lwgps_is_valid(_gh)

	Check if current GPS data contain valid signal.

Note

LWGPS_CFG_STATEMENT_GPRMC must be enabled and GPRMC statement must be sent from GPS receiver

	Parameters

	
	_gh – [in] GPS handle

	Returns

	1 on success, 0 otherwise

Typedefs

	
typedef double lwgps_float_t

	GPS float definition, can be either float or double

Note

Check for LWGPS_CFG_DOUBLE configuration

	
typedef void (*lwgps_process_fn)(lwgps_statement_t res)

	Signature for caller-suplied callback function from gps_process.

	Param res

	[in] statement type of recently parsed statement

Enums

	
enum lwgps_statement_t

	ENUM of possible GPS statements parsed.

Values:

	
enumerator STAT_UNKNOWN = 0

	Unknown NMEA statement

	
enumerator STAT_GGA = 1

	GPGGA statement

	
enumerator STAT_GSA = 2

	GPGSA statement

	
enumerator STAT_GSV = 3

	GPGSV statement

	
enumerator STAT_RMC = 4

	GPRMC statement

	
enumerator STAT_UBX = 5

	UBX statement (uBlox specific)

	
enumerator STAT_UBX_TIME = 6

	UBX TIME statement (uBlox specific)

	
enumerator STAT_CHECKSUM_FAIL = UINT8_MAX

	Special case, used when checksum fails

	
enum lwgps_speed_t

	List of optional speed transformation from GPS values (in knots)

Values:

	
enumerator LWGPS_SPEED_KPS

	Kilometers per second

	
enumerator LWGPS_SPEED_KPH

	Kilometers per hour

	
enumerator LWGPS_SPEED_MPS

	Meters per second

	
enumerator LWGPS_SPEED_MPM

	Meters per minute

	
enumerator LWGPS_SPEED_MIPS

	Miles per second

	
enumerator LWGPS_SPEED_MPH

	Miles per hour

	
enumerator LWGPS_SPEED_FPS

	Foots per second

	
enumerator LWGPS_SPEED_FPM

	Foots per minute

	
enumerator LWGPS_SPEED_MPK

	Minutes per kilometer

	
enumerator LWGPS_SPEED_SPK

	Seconds per kilometer

	
enumerator LWGPS_SPEED_SP100M

	Seconds per 100 meters

	
enumerator LWGPS_SPEED_MIPM

	Minutes per mile

	
enumerator LWGPS_SPEED_SPM

	Seconds per mile

	
enumerator LWGPS_SPEED_SP100Y

	Seconds per 100 yards

	
enumerator LWGPS_SPEED_SMPH

	Sea miles per hour

Functions

	
uint8_t lwgps_init(lwgps_t *gh)

	Init GPS handle.

	Parameters

	gh – [in] GPS handle structure

	Returns

	1 on success, 0 otherwise

	
uint8_t lwgps_process(lwgps_t *gh, const void *data, size_t len, lwgps_process_fn evt_fn)

	Process NMEA data from GPS receiver.

	Parameters

	
	gh – [in] GPS handle structure

	data – [in] Received data

	len – [in] Number of bytes to process

	evt_fn – [in] Event function to notify application layer. This parameter is available only if LWGPS_CFG_STATUS is enabled

	Returns

	1 on success, 0 otherwise

	
uint8_t lwgps_distance_bearing(lwgps_float_t las, lwgps_float_t los, lwgps_float_t lae, lwgps_float_t loe, lwgps_float_t *d, lwgps_float_t *b)

	Calculate distance and bearing between 2 latitude and longitude coordinates.

	Parameters

	
	las – [in] Latitude start coordinate, in units of degrees

	los – [in] Longitude start coordinate, in units of degrees

	lae – [in] Latitude end coordinate, in units of degrees

	loe – [in] Longitude end coordinate, in units of degrees

	d – [out] Pointer to output distance in units of meters

	b – [out] Pointer to output bearing between start and end coordinate in relation to north in units of degrees

	Returns

	1 on success, 0 otherwise

	
lwgps_float_t lwgps_to_speed(lwgps_float_t sik, lwgps_speed_t ts)

	Convert NMEA GPS speed (in knots = nautical mile per hour) to different speed format.

	Parameters

	
	sik – [in] Speed in knots, received from GPS NMEA statement

	ts – [in] Target speed to convert to from knots

	Returns

	Speed calculated from knots

	
struct lwgps_sat_t

	
#include <lwgps.h>

Satellite descriptor.

Public Members

	
uint8_t num

	Satellite number

	
uint8_t elevation

	Elevation value

	
uint16_t azimuth

	Azimuth in degrees

	
uint8_t snr

	Signal-to-noise ratio

	
struct lwgps_t

	
#include <lwgps.h>

GPS main structure.

Public Members

	
lwgps_float_t latitude

	Latitude in units of degrees

	
lwgps_float_t longitude

	Longitude in units of degrees

	
lwgps_float_t altitude

	Altitude in units of meters

	
lwgps_float_t geo_sep

	Geoid separation in units of meters

	
uint8_t sats_in_use

	Number of satellites in use

	
uint8_t fix

	Fix status. 0 = invalid, 1 = GPS fix, 2 = DGPS fix, 3 = PPS fix

	
uint8_t hours

	Hours in UTC

	
uint8_t minutes

	Minutes in UTC

	
uint8_t seconds

	Seconds in UTC

	
lwgps_float_t dop_h

	Dolution of precision, horizontal

	
lwgps_float_t dop_v

	Dolution of precision, vertical

	
lwgps_float_t dop_p

	Dolution of precision, position

	
uint8_t fix_mode

	Fix mode. 1 = NO fix, 2 = 2D fix, 3 = 3D fix

	
uint8_t satellites_ids[12]

	List of satellite IDs in use. Valid range is 0 to sats_in_use

	
uint8_t sats_in_view

	Number of satellites in view

	
lwgps_sat_t sats_in_view_desc[12]

	

	
uint8_t is_valid

	GPS valid status

	
lwgps_float_t speed

	Ground speed in knots

	
lwgps_float_t course

	Ground coarse

	
lwgps_float_t variation

	Magnetic variation

	
uint8_t date

	Fix date

	
uint8_t month

	Fix month

	
uint8_t year

	Fix year

	
lwgps_float_t utc_tow

	UTC TimeOfWeek, eg 113851.00

	
uint16_t utc_wk

	UTC week number, continues beyond 1023

	
uint8_t leap_sec

	UTC leap seconds; UTC + leap_sec = TAI

	
uint32_t clk_bias

	Receiver clock bias, eg 1930035

	
lwgps_float_t clk_drift

	Receiver clock drift, eg -2660.664

	
uint32_t tp_gran

	Time pulse granularity, eg 43

Configuration

This is the default configuration of the middleware.
When any of the settings shall be modified, it shall be done in dedicated application config lwgps_opts.h file.

Note

Check Getting started to create configuration file.

	
group LWGPS_OPT

	Default configuration setup.

Defines

	
LWGPS_CFG_DOUBLE

	Enables 1 or disables 0 double precision for floating point values such as latitude, longitude, altitude.

double is used as variable type when enabled, float when disabled.

	
LWGPS_CFG_STATUS

	Enables 1 or disables 0 status reporting callback by lwgps_process.

Note

This is an extension, so not enabled by default.

	
LWGPS_CFG_STATEMENT_GPGGA

	Enables 1 or disables 0 GGA statement parsing.

Note

This statement must be enabled to parse:
	Latitude, Longitude, Altitude

	Number of satellites in use, fix (no fix, GPS, DGPS), UTC time

	
LWGPS_CFG_STATEMENT_GPGSA

	Enables 1 or disables 0 GSA statement parsing.

Note

This statement must be enabled to parse:
	Position/Vertical/Horizontal dilution of precision

	Fix mode (no fix, 2D, 3D fix)

	IDs of satellites in use

	
LWGPS_CFG_STATEMENT_GPRMC

	Enables 1 or disables 0 RMC statement parsing.

Note

This statement must be enabled to parse:
	Validity of GPS signal

	Ground speed in knots and coarse in degrees

	Magnetic variation

	UTC date

	
LWGPS_CFG_STATEMENT_GPGSV

	Enables 1 or disables 0 GSV statement parsing.

Note

This statement must be enabled to parse:
	Number of satellites in view

	Optional details of each satellite in view. See LWGPS_CFG_STATEMENT_GPGSV_SAT_DET

	
LWGPS_CFG_STATEMENT_GPGSV_SAT_DET

	Enables 1 or disables 0 detailed parsing of each satellite in view for GSV statement.

Note

When this feature is disabled, only number of “satellites in view” is parsed

	
LWGPS_CFG_STATEMENT_PUBX

	Enables 1 or disables 0 parsing and generation of PUBX (uBlox) messages.

PUBX are a nonstandard ublox-specific extensions, so disabled by default.

	
LWGPS_CFG_STATEMENT_PUBX_TIME

	Enables 1 or disables 0 parsing and generation of PUBX (uBlox) TIME messages.

This is a nonstandard ublox-specific extension, so disabled by default.

This configure option requires LWGPS_CFG_STATEMENT_PUBX

Note

TIME messages can be used to obtain:
	UTC time of week

	UTC week number

	Leap seconds (allows conversion to eg. TAI)

	
LWGPS_CFG_CRC

	Enables 1 or disables 0 CRC calculation and check.

Note

When not enabled, CRC check is ignored

	
LWESP_CFG_DISTANCE_BEARING

	Enables 1 or disables 0 distance and bearing calculation.

Note

When not enabled, corresponding function is disabled

Examples and demos

There are several basic examples provided with the library.

Parse block of data

In this example, block of data is prepared as big string array and sent to processing function in single shot.
Application can then check if GPS signal has been detected as valid and use other data accordingly.

Minimum example code

 1/**
 2 * This example uses direct processing function
 3 * to process dummy NMEA data from GPS receiver
 4 */
 5#include <string.h>
 6#include <stdio.h>
 7#include "lwgps/lwgps.h"
 8
 9/* GPS handle */
10lwgps_t hgps;
11
12/**
13 * \brief Dummy data from GPS receiver
14 */
15const char gps_rx_data[] = ""
16 "$GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F\r\n"
17 "$GPRMB,A,,,,,,,,,,,,V*71\r\n"
18 "$GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75\r\n"
19 "$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D\r\n"
20 "$GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71\r\n"
21 "$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77\r\n"
22 "$PGRME,22.0,M,52.9,M,51.0,M*14\r\n"
23 "$GPGLL,3907.360,N,12102.481,W,183730,A*33\r\n"
24 "$PGRMZ,2062,f,3*2D\r\n"
25 "$PGRMM,WGS84*06\r\n"
26 "$GPBOD,,T,,M,,*47\r\n"
27 "$GPRTE,1,1,c,0*07\r\n"
28 "$GPRMC,183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,E*67\r\n"
29 "$GPRMB,A,,,,,,,,,,,,V*71\r\n";
30
31int
32main() {
33 /* Init GPS */
34 lwgps_init(&hgps);
35
36 /* Process all input data */
37 lwgps_process(&hgps, gps_rx_data, strlen(gps_rx_data));
38
39 /* Print messages */
40 printf("Valid status: %d\r\n", hgps.is_valid);
41 printf("Latitude: %f degrees\r\n", hgps.latitude);
42 printf("Longitude: %f degrees\r\n", hgps.longitude);
43 printf("Altitude: %f meters\r\n", hgps.altitude);
44
45 return 0;
46}

Parse received data from interrupt/DMA

Second example is a typical use case with interrupts on embedded systems.
For each received character, application uses ringbuff as intermediate buffer.
Data are later processed outside interrupt context.

Note

For the sake of this example, application implements interrupts as function call in while loop.

Example of buffer

 1#include "lwgps/lwgps.h"
 2#include "lwrb/lwrb.h"
 3#include <string.h>
 4
 5/* GPS handle */
 6lwgps_t hgps;
 7
 8/* GPS buffer */
 9lwrb_t hgps_buff;
10uint8_t hgps_buff_data[12];
11
12/**
13 * \brief Dummy data from GPS receiver
14 * \note This data are used to fake UART receive event on microcontroller
15 */
16const char
17gps_rx_data[] = ""
18 "$GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F\r\n"
19 "$GPRMB,A,,,,,,,,,,,,V*71\r\n"
20 "$GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75\r\n"
21 "$GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D\r\n"
22 "$GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71\r\n"
23 "$GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77\r\n"
24 "$PGRME,22.0,M,52.9,M,51.0,M*14\r\n"
25 "$GPGLL,3907.360,N,12102.481,W,183730,A*33\r\n"
26 "$PGRMZ,2062,f,3*2D\r\n"
27 "$PGRMM,WGS84*06\r\n"
28 "$GPBOD,,T,,M,,*47\r\n"
29 "$GPRTE,1,1,c,0*07\r\n"
30 "$GPRMC,183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,E*67\r\n"
31 "$GPRMB,A,,,,,,,,,,,,V*71\r\n";
32static size_t write_ptr;
33static void uart_irqhandler(void);
34
35int
36main() {
37 uint8_t rx;
38
39 /* Init GPS */
40 lwgps_init(&hgps);
41
42 /* Create buffer for received data */
43 lwrb_init(&hgps_buff, hgps_buff_data, sizeof(hgps_buff_data));
44
45 while (1) {
46 /* Add new character to buffer */
47 /* Fake UART interrupt handler on host microcontroller */
48 uart_irqhandler();
49
50 /* Process all input data */
51 /* Read from buffer byte-by-byte and call processing function */
52 if (lwrb_get_full(&hgps_buff)) { /* Check if anything in buffer now */
53 while (lwrb_read(&hgps_buff, &rx, 1) == 1) {
54 lwgps_process(&hgps, &rx, 1); /* Process byte-by-byte */
55 }
56 } else {
57 /* Print all data after successful processing */
58 printf("Latitude: %f degrees\r\n", hgps.latitude);
59 printf("Longitude: %f degrees\r\n", hgps.longitude);
60 printf("Altitude: %f meters\r\n", hgps.altitude);
61 break;
62 }
63 }
64
65 return 0;
66}
67
68/**
69 * \brief Interrupt handler routing for UART received character
70 * \note This is not real MCU, it is software method, called from main
71 */
72static void
73uart_irqhandler(void) {
74 /* Make interrupt handler as fast as possible */
75 /* Only write to received buffer and process later */
76 if (write_ptr < strlen(gps_rx_data)) {
77 /* Write to buffer only */
78 lwrb_write(&hgps_buff, &gps_rx_data[write_ptr], 1);
79 ++write_ptr;
80 }
81}

Distance and bearing

Library provides calculation of distance and bearing between 2 coordinates on earth.
This is useful if used with autonomnous devices to understand in which direction
device has to move to reach end point while knowing start coordinate.

Distance and bearing calculation

 1#include "lwgps/lwgps.h"
 2
 3/* Distance and bearing results */
 4lwgps_float_t dist, bear;
 5
 6/* New York coordinates */
 7lwgps_float_t lat1 = 40.685721;
 8lwgps_float_t lon1 = -73.820465;
 9
10/* Munich coordinates */
11lwgps_float_t lat2 = 48.150906;
12lwgps_float_t lon2 = 11.554176;
13
14/* Go from New York to Munich */
15/* Calculate distance and bearing related to north */
16lwgps_distance_bearing(lat1, lon1, lat2, lon2, &dist, &bear);
17printf("Distance: %f meters\r\n", (float)dist);
18printf("Initial bearing: %f degrees\r\n", (float)bear);
19
20/* Go from Munich to New York */
21/* Calculate distance and bearing related to north */
22lwgps_distance_bearing(lat2, lon2, lat1, lon1, &dist, &bear);
23printf("Distance: %f meters\r\n", (float)dist);
24printf("Initial bearing: %f degrees\r\n", (float)bear);

Changelog

Changelog

Develop

v2.2.0

- Split `CMakeLists.txt` files between library and executable
- Change license year to `2023`
- Add `.clang-format` draft
- Deprecate lowercase `lwgps_speed_xxx` enumeration. Temporary implement macro to keep backward compatibility. Will be removed in next major release
- Improve `C++` port

v2.1.0

- Add configuration settings to be consistend with other LwXX libraries
- Apply code style settings with Artistic style options

v2.0.0

- Break compatibility with v1.x
- Function prefix set to `lwgps_`
- Macros prefix set to `LWGPS_`
- Added support for PUBX Ublox statement

v1.1.0

- Use pre-increment instead of post-increment
- Remove buffer library and propose ringbuff instead
- Other code style enhancements

v1.0.0

- Initial release

Index

 L

L

 	
 	LWESP_CFG_DISTANCE_BEARING (C macro)

 	LWGPS_CFG_CRC (C macro)

 	LWGPS_CFG_DOUBLE (C macro)

 	LWGPS_CFG_STATEMENT_GPGGA (C macro)

 	LWGPS_CFG_STATEMENT_GPGSA (C macro)

 	LWGPS_CFG_STATEMENT_GPGSV (C macro)

 	LWGPS_CFG_STATEMENT_GPGSV_SAT_DET (C macro)

 	LWGPS_CFG_STATEMENT_GPRMC (C macro)

 	LWGPS_CFG_STATEMENT_PUBX (C macro)

 	LWGPS_CFG_STATEMENT_PUBX_TIME (C macro)

 	LWGPS_CFG_STATUS (C macro)

 	lwgps_distance_bearing (C++ function)

 	lwgps_float_t (C++ type)

 	lwgps_init (C++ function)

 	lwgps_is_valid (C macro)

 	lwgps_process (C++ function)

 	lwgps_process_fn (C++ type)

 	lwgps_sat_t (C++ struct)

 	lwgps_sat_t::azimuth (C++ member)

 	lwgps_sat_t::elevation (C++ member)

 	lwgps_sat_t::num (C++ member)

 	lwgps_sat_t::snr (C++ member)

 	lwgps_speed_fpm (C macro)

 	lwgps_speed_fps (C macro)

 	lwgps_speed_kph (C macro)

 	lwgps_speed_kps (C macro)

 	lwgps_speed_mipm (C macro)

 	lwgps_speed_mips (C macro)

 	lwgps_speed_mph (C macro)

 	lwgps_speed_mpk (C macro)

 	lwgps_speed_mpm (C macro)

 	lwgps_speed_mps (C macro)

 	lwgps_speed_smph (C macro)

 	lwgps_speed_sp100m (C macro)

 	lwgps_speed_sp100y (C macro)

 	lwgps_speed_spk (C macro)

 	lwgps_speed_spm (C macro)

 	lwgps_speed_t (C++ enum)

 	lwgps_speed_t::LWGPS_SPEED_FPM (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_FPS (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_KPH (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_KPS (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_MIPM (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_MIPS (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_MPH (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_MPK (C++ enumerator)

 	
 	lwgps_speed_t::LWGPS_SPEED_MPM (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_MPS (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_SMPH (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_SP100M (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_SP100Y (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_SPK (C++ enumerator)

 	lwgps_speed_t::LWGPS_SPEED_SPM (C++ enumerator)

 	lwgps_statement_t (C++ enum)

 	lwgps_statement_t::STAT_CHECKSUM_FAIL (C++ enumerator)

 	lwgps_statement_t::STAT_GGA (C++ enumerator)

 	lwgps_statement_t::STAT_GSA (C++ enumerator)

 	lwgps_statement_t::STAT_GSV (C++ enumerator)

 	lwgps_statement_t::STAT_RMC (C++ enumerator)

 	lwgps_statement_t::STAT_UBX (C++ enumerator)

 	lwgps_statement_t::STAT_UBX_TIME (C++ enumerator)

 	lwgps_statement_t::STAT_UNKNOWN (C++ enumerator)

 	lwgps_t (C++ struct)

 	lwgps_t::altitude (C++ member)

 	lwgps_t::clk_bias (C++ member)

 	lwgps_t::clk_drift (C++ member)

 	lwgps_t::course (C++ member)

 	lwgps_t::date (C++ member)

 	lwgps_t::dop_h (C++ member)

 	lwgps_t::dop_p (C++ member)

 	lwgps_t::dop_v (C++ member)

 	lwgps_t::fix (C++ member)

 	lwgps_t::fix_mode (C++ member)

 	lwgps_t::geo_sep (C++ member)

 	lwgps_t::hours (C++ member)

 	lwgps_t::is_valid (C++ member)

 	lwgps_t::latitude (C++ member)

 	lwgps_t::leap_sec (C++ member)

 	lwgps_t::longitude (C++ member)

 	lwgps_t::minutes (C++ member)

 	lwgps_t::month (C++ member)

 	lwgps_t::satellites_ids (C++ member)

 	lwgps_t::sats_in_use (C++ member)

 	lwgps_t::sats_in_view (C++ member)

 	lwgps_t::sats_in_view_desc (C++ member)

 	lwgps_t::seconds (C++ member)

 	lwgps_t::speed (C++ member)

 	lwgps_t::tp_gran (C++ member)

 	lwgps_t::utc_tow (C++ member)

 	lwgps_t::utc_wk (C++ member)

 	lwgps_t::variation (C++ member)

 	lwgps_t::year (C++ member)

 	lwgps_to_speed (C++ function)

 _static/dark-light/moon.png

_static/dark-light/sun.png

_static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 LwGPS v2.2.0 documentation

 		
 Getting started

 		
 Download library

 		
 Download from releases

 		
 Clone from Github

 		
 Add library to project

 		
 Configuration file

 		
 Minimal example code

 		
 User manual

 		
 How it works

 		
 Float/double precision

 		
 Thread safety

 		
 NMEA data refresh

 		
 Common approach

 		
 Tests during development

 		
 API reference

 		
 LwGPS

 		
 Configuration

 		
 Examples and demos

 		
 Parse block of data

 		
 Parse received data from interrupt/DMA

 		
 Distance and bearing

 		
 Changelog

_static/images/logo_tm_full.png
TILEN
MAJERLE

_static/images/logo_tm.png

