

LwMEM branch-d005587 documentation

Welcome to the documentation for version branch-d005587.

LwMEM is lightweight dynamic memory manager optimized for embedded systems.

[image: _images/logo.svg]Download library Getting started Open Github [https://github.com/MaJerle/lwmem] Donate [https://paypal.me/tilz0R]

Features

	Written in ANSI C99, compatible with size_t for size data types

	Implements standard C library functions for memory allocation, malloc, calloc, realloc and free

	Uses first-fit algorithm to search for free block

	Supports multiple allocation instances to split between memories and/or CPU cores

	Supports different memory regions to allow use of fragmented memories

	Highly configurable for memory allocation and reallocation

	Supports embedded applications with fragmented memories

	Supports automotive applications

	Supports advanced free/realloc algorithms to optimize memory usage

	Operating system ready, thread-safe API

	User friendly MIT license

Requirements

	C compiler

	Less than 2kB of non-volatile memory

Contribute

Fresh contributions are always welcome. Simple instructions to proceed:

	Fork Github repository

	Respect C style & coding rules [https://github.com/MaJerle/c-code-style] used by the library

	Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

	Report a bug

	Ask for a feature request

License

MIT License

Copyright (c) 2020 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Table of contents

	LwMEM branch-d005587 documentation

	Getting started
	Download library

	Add library to project

	Configuration file

	Minimal example code

	User manual
	How it works

	LwMEM instances

	Reallocation algorithm

	Thread safety

	API reference
	LwMEM

	Configuration

	System functions

	Examples and demos
	Example architectures

	Examples list

Getting started

Getting started may be the most challenging part of every new library.
This guide is describing how to start with the library quickly and effectively

Download library

Library is primarly hosted on Github [https://github.com/MaJerle/lwmem].

You can get it with:

	Downloading latest release from releases area [https://github.com/MaJerle/lwmem/releases] on Github

	Cloning master branch for latest stable version

	Cloning develop branch for latest development

Download from releases

All releases are available on Github releases area [https://github.com/MaJerle/lwmem/releases].

Clone from Github

First-time clone

This is used when you do not have yet local copy on your machine.

	Make sure git is installed.

	Open console and navigate to path in the system to clone repository to. Use command cd your_path

	Clone repository with one of available 3 options

	Run git clone --recurse-submodules https://github.com/MaJerle/lwmem command to clone entire repository, including submodules

	Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/lwmem to clone development branch, including submodules

	Run git clone --recurse-submodules --branch master https://github.com/MaJerle/lwmem to clone latest stable branch, including submodules

	Navigate to examples directory and run favourite example

Update cloned to latest version

	Open console and navigate to path in the system where your resources repository is. Use command cd your_path

	Run git pull origin master --recurse-submodules command to pull latest changes and to fetch latest changes from submodules on master branch

	Run git pull origin develop --recurse-submodules command to pull latest changes and to fetch latest changes from submodules on develop branch

	Run git submodule foreach git pull origin master to update & merge all submodules

Note

This is preferred option to use when you want to evaluate library and run prepared examples.
Repository consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root repository.

Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.
Next step is to add the library to the project, by means of source files to compiler inputs and header files in search path

	Copy lwmem folder to your project, it contains library files

	Add lwmem/src/include folder to include path of your toolchain. This is where C/C++ compiler can find the files during compilation process. Usually using -I flag

	Add source files from lwmem/src/ folder to toolchain build. These files are built by C/C++ compiler

	Copy lwmem/src/include/lwmem/lwmem_opts_template.h to project folder and rename it to lwmem_opts.h

	Build the project

Configuration file

Configuration file is used to overwrite default settings defined for the essential use case.
Library comes with template config file, which can be modified according to needs.
and it should be copied (or simply renamed in-place) and named lwmem_opts.h

Note

Default configuration template file location: lwmem/src/include/lwmem/lwmem_opts_template.h.
File must be renamed to lwmem_opts.h first and then copied to the project directory where compiler
include paths have access to it by using #include "lwmem_opts.h".

List of configuration options are available in the Configuration section.
If any option is about to be modified, it should be done in configuration file

Template configuration file

 1/**
 2 * \file lwmem_opts_template.h
 3 * \brief Template config file
 4 */
 5
 6/*
 7 * Copyright (c) 2020 Tilen MAJERLE
 8 *
 9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwMEM - Lightweight dynamic memory manager library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v2.0.0
33 */
34#ifndef LWMEM_HDR_OPTS_H
35#define LWMEM_HDR_OPTS_H
36
37/* Rename this file to "lwmem_opts.h" for your application */
38
39/*
40 * Open "include/lwmem/lwmem_opt.h" and
41 * copy & replace here settings you want to change values
42 */
43
44#endif /* LWMEM_HDR_OPTS_H */

Note

If you prefer to avoid using configuration file, application must define
a global symbol LWMEM_IGNORE_USER_OPTS, visible across entire application.
This can be achieved with -D compiler option.

Minimal example code

To verify proper library setup, minimal example has been prepared.
Run it in your main application file to verify its proper execution

Absolute minimum example

 1#include "lwmem/lwmem.h"
 2
 3/* Create regions, address and length of regions */
 4static
 5lwmem_region_t regions[] = {
 6 /* Set start address and size of each region */
 7 { (void *)0x10000000, 0x00001000 },
 8 { (void *)0xA0000000, 0x00008000 },
 9 { (void *)0xC0000000, 0x00008000 },
10 { NULL, 0}
11};
12
13/* Later in the initialization process */
14/* Assign regions for manager */
15lwmem_assignmem(regions);
16
17/* Usage in program... */
18
19void* ptr;
20/* Allocate 8 bytes of memory */
21ptr = lwmem_malloc(8);
22if (ptr != NULL) {
23 /* Allocation successful */
24}
25
26/* Later... */
27/* Free allocated memory when not used */
28lwmem_free(ptr);
29ptr = NULL;
30/* .. or */
31lwmem_free_s(&ptr);

User manual

	How it works
	Allocate at specific region

	LwMEM instances

	Reallocation algorithm
	Shrink existing block

	Enlarge existing block

	Thread safety

How it works

This section shows different buffer corner cases and provides basic understanding how memory allocation works within firmware.

As it is already known, library supports multiple memory regions (or addresses) to allow multiple memory locations within embedded systems:

	Internal RAM memory

	External RAM memory

	Optional fragmented internal memory

For the sake of this understanding, application is using 3 regions

	Region 1 memory starts at 0x1000 0000 and is 0x0000 1000 bytes long

	Region 2 memory starts at 0xA000 0000 and is 0x0000 8000 bytes long

	Region 3 memory starts at 0xC000 0000 and is 0x0000 8000 bytes long

	Entry 4 indicates end of regions array descriptor

Note

Total size of memory used by application for memory manager is 0x0001 1000 bytes or 69 kB.
This is a sum of all 3 regions.
Last entry indicates end of regions with start address set as NULL and size as 0

Example also assumes that:

	Size of any kind of pointer is 4-bytes, sizeof(any_pointer_type) = 4

	Size of size_t type is 4-bytes, sizeof(size_t) = 4

First step is to define custom regions and assign them to memory manager.

Definitions of different memory regions

 1#include "lwmem/lwmem.h"
 2
 3/*
 4 * \brief Define regions for memory manager
 5 */
 6static
 7lwmem_region_t regions[] = {
 8 /* Set start address and size of each region */
 9 { (void *)0x10000000, 0x00001000 },
10 { (void *)0xA0000000, 0x00008000 },
11 { (void *)0xC0000000, 0x00008000 },
12 { NULL, 0},
13};
14
15/* Later in the initialization process */
16/* Assign regions for manager */
17lwmem_assignmem(regions);
18/* or */
19lwmem_assignmem_ex(NULL, regions);

Note

Order of regions must be lower address first. Regions must not overlap with their sizes.

When calling lwmem_assignmem, manager prepares memory blocks and assigns default values.

[image: Default memory structure after initialization]Default memory structure after initialization

Memory managers sets some default values, these are:

	All regions are connected through single linked list. Each member of linked list represents free memory slot

	Variable Start block is by default included in library and points to first free memory on the list

	Each region has 2 free slot indicators

	One at the end of each region. It takes 8 bytes of memory:

	Size of slot is set to 0 which means no available memory

	Its next value points to next free slot in another region. Set to NULL if there is no free slot available anymore after and is last region indicator

	One at the beginning of region. It also takes 8 bytes of memory:

	Size of slot is set to region_size - 8, ignoring size of last slot. Effective size of memory, application may allocate in region, is always for 2 meta slots less than region size, which means max_app_malloc_size = region_size - 2 - 8 bytes

	Its next value points to end slot in the same region

When application tries to allocate piece of memory, library will check linked list of empty blocks until it finds first with sufficient size. If there is a block bigger than requested size, it will be marked as allocated and removed from linked list.

Note

Further optimizations are implemented, such as possibility to split block when requested size is smaller than empty block size is.

[image: Memory structure after first allocation]Memory structure after first allocation

	Light red background slot indicates memory in use.

	All blocks marked in use have

	next value is set to NULL

	size value has MSB bit set to 1, indicating block is allocated and the rest of bits represent size of block, including metadata size

	If application asks for 8 bytes, fields are written as next = 0x0000 0000 and size = 0x8000 000F

	Start block now points to free slot somewhere in the middle of region

[image: Step-by-step memory structure after multiple allocations and deallocations]Step-by-step memory structure after multiple allocations and deallocations

Image shows only first region to simplify process. Same procedure applies to other regions too.

	Case A: Second block allocated. Remaining memory is now smaller and Start block points to it

	Case B: Third block allocated. Remaining memory is now smaller and Start block points to it

	Case C: Forth block allocated. Remaining memory is now smaller and Start block points to it

	Case D: Third block freed and added back to linked list of free slots.

	Case E: Forth block freed. Manager detects blocks before and after current are free and merges all to one big contiguous block

	Case F: First block freed. Start block points to it as it has been added back to linked list

	Case G: Second block freed. Manager detects blocks before and after current are free and merges all to one big contiguous block.

	No any memory allocated anymore, regions are back to default state

Allocate at specific region

When memory allocation is in progress, LwMEM manager will start
at first free block and will loop through all regions until first free block of sufficient size has been found.
At this stage, application really does not have any control which region has been used for allocation.

Especially in the world of embedded systems, sometimes application uses external RAM device,
which are by definition slower than internal one. Let’s take an example below.

[image: Region definition with one internal and two external regions]Region definition with one internal and two external regions

And code example:

Region definition with one internal and two external regions

 1#include "lwmem/lwmem.h"
 2
 3/*
 4 * \brief Define regions for memory manager
 5 */
 6static
 7lwmem_region_t regions[] = {
 8 /* Set start address and size of each region */
 9 { (void *)0x10000000, 0x00001000 },
10 { (void *)0xA0000000, 0x00008000 },
11 { (void *)0xC0000000, 0x00008000 },
12 { NULL, 0},
13};
14
15/* Later in the initialization process */
16/* Assign regions for manager */
17lwmem_assignmem(regions);
18/* or */
19lwmem_assignmem_ex(NULL, regions);

For the sake of this example, let’s say that:

	First region is in very fast internal RAM, coupled with CPU core
* Application shall use this only for small chunks of memory, frequently used, not to disturb external RAM interface

	Second and third regions are used for bigger RAM blocks used less frequently and interface is not overloaded when used

Size of first region is 0x1000 bytes.
When application tries to allocate (example) 512 bytes, it will find first free block in first region.
However, application wants to use (if possible) external RAM for this size of allocation.

There is a way to specify in which region memory shall be allocated, using extended functions.

Allocate memory from specific region

 1#include "lwmem/lwmem.h"
 2
 3/* Assignment has been done previously... */
 4
 5/* ptr1 will be allocated in first free block */
 6/* ptr2 will be allocated from second region */
 7void* ptr1, *ptr2;
 8
 9/* Allocate 8 bytes of memory in any region */
10/* Use one of 2 options, both have same effect */
11ptr1 = lwmem_malloc(8);
12ptr1 = lwmem_malloc_ex(NULL, NULL, 8);
13
14/* Allocate memory from specific region only */
15/* Use second region */
16ptr2 = lwmem_malloc_ex(NULL, ®ions[1], 512);

Tip

Check lwmem_malloc_ex() for more information about parameters and return values

LwMEM instances

LwMEM architecture allows multiple instances, to completely isolate memory management between different memories.
This may allow separation of memory management at hardware level with different security feature.

By default, LwMEM has single instance created at library level, called default instance.
Default instance does not need any special attention as it is embedded at library core,
instead application has to assign memory regions for the instance.

Every instance has:

	Instance control block

	Multiple regions assigned to each instance

Note

Control block of default instance is already initialized by library core,
hence it does not need any special attention at application layer.

[image: LwMEM internal architecture with control block]LwMEM internal architecture with control block

Picture above shows internal architecture of LwMEM.
Control block holds info about first free block for allocation and other private data,
such as mutex handle when operating system is in use.

Yellow part of the image shows customized, application-defined, regions,
which must be manually assigned to the instance during application start-up.

Known example for assinging regions to LwMEM is shown below.
Default instance is used, therefore no special attention needs to be added
when assigning regions or allocating memory.

Definition and assignment of regions for default LwMEM instance

 1#include "lwmem/lwmem.h"
 2
 3/*
 4 * \brief Define regions for memory manager
 5 */
 6static
 7lwmem_region_t regions[] = {
 8 /* Set start address and size of each region */
 9 { (void *)0x10000000, 0x00001000 },
10 { (void *)0xA0000000, 0x00008000 },
11 { (void *)0xC0000000, 0x00008000 },
12 { NULL, 0},
13};
14
15/* Later in the initialization process */
16/* Assign regions for manager */
17lwmem_assignmem(regions);
18/* or */
19lwmem_assignmem_ex(NULL, regions);

When application adds second LwMEM instance, then special functions with _ex must be used.
These allow application to specify for which LwMEM instance specific operation is intended.

Tip

Check lwmem_assignmem_ex() description for more information about input parameters.

Definition and assignment of regions for custom LwMEM instance

 1#include "lwmem/lwmem.h"
 2
 3/**
 4 * \brief Custom LwMEM instance
 5 */
 6static
 7lwmem_t lw_custom;
 8
 9/*
10 * \brief Define regions for memory manager
11 */
12static
13lwmem_region_t regions[] = {
14 /* Set start address and size of each region */
15 { (void *)0x10000000, 0x00001000 },
16 { (void *)0xA0000000, 0x00008000 },
17 { (void *)0xC0000000, 0x00008000 },
18 { NULL, 0 }
19};
20
21/* Later in the initialization process */
22/* Assign regions for custom instance */
23lwmem_assignmem_ex(&lw_custom, regions);

Reallocation algorithm

What makes this library different to others is its ability for memory re-allocation.
This section explains how it works and how it achieves best performances and less memory fragmentation vs others.

Sometimes application uses variable length of memory,
especially when number of (as an example) elements in not fully known in advance.
For the sake of this example, application anticipates 12 numbers (integers) but may (due to unknown reason in some cases) receive more than this.
If application needs to hold all received numbers, it may be necessary to:

	Option 1: Increase memory block size using reallocations

	Option 2: Use very big (do we know how big?) array, allocated statically or dynamically, which would hold all numbers at any time possible

Note

LwMEM has been optimized to handle well option 1.

Application needs to define at least single region:

Memory region assignment

 1#include "lwmem/lwmem.h"
 2
 3/* Define one region used by lwmem */
 4static unsigned char region_mem[128];
 5
 6/*
 7 * \brief Define regions for memory manager
 8 */
 9static
10lwmem_region_t regions[] = {
11 /* Set start address and size of each region */
12 { region_mem, sizeof(region_mem) },
13 { NULL, 0 }
14};
15
16/* Later in the initialization process */
17/* Assign regions for manager */
18lwmem_assignmem(regions);
19lwmem_debug_free(); /* This is debug function for sake of this example */

When executed on test machine, it prints:

Memory region assignment output

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 120 bytes

B 0: A: 0x013CB160, S: 0, next B: 0x013CB520; Start block
B 1: A: 0x013CB520, S: 120, next B: 0x013CB598
B 2: A: 0x013CB598, S: 0, next B: 0x00000000; End of region

Note

Please check How it works section for more information

After region has been defined, application tries to allocate memory for 12 integers.

First memory allocation

 1int* ints = lwmem_malloc(12 * sizeof(*ints)); /* Allocate memory for 12 integers */
 2
 3/* Check for successful allocation */
 4if (ints == NULL) {
 5 printf("Allocation failed!\r\n");
 6 return -1;
 7}
 8lwmem_debug_free(); /* This is debug function for sake of this example */
 9
10/* ints is a pointer to memory size for our integers */
11/* Do not forget to free it when not used anymore */
12lwmem_free_s(&ints);

When executed on test machine, it prints:

First memory allocation output

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 64 bytes

B 0: A: 0x013CB160, S: 0, next B: 0x013CB558; Start block
B 1: A: 0x013CB558, S: 64, next B: 0x013CB598
B 2: A: 0x013CB598, S: 0, next B: 0x00000000; End of region

At first, manager had 120 bytes of available memory while after allocation of 48 bytes, it only left 64 bytes.
Effectively 120 - 64 = 56 bytes have been used to allocate 48 bytes of memory.

Note

Every allocated block holds meta data. On test machine, sizeof(int) = 4 therefore 8 bytes are used for metadata as 56 - 12 * sizeof(int) = 8. Size of meta data header depends on CPU architecture and may be different between architectures

Application got necessary memory for 12 integers. How to proceed when application needs to extend size for one more integer?

Easiest would be to:

	Allocate new memory block with new size and check if allocation was successful

	Manually copy content from old block to new block

	Free old memory block

	Use new block for all future operations

Here is the code:

Custom reallocation

 1int* ints = lwmem_malloc(12 * sizeof(*ints)); /* Allocate memory for 12 integers */
 2
 3/* Check for successful allocation */
 4if (ints == NULL) {
 5 printf("Allocation failed ints!\r\n");
 6 return -1;
 7}
 8printf("ints allocated for 12 integers\r\n");
 9lwmem_debug_free(); /* This is debug function for sake of this example */
10
11/* Now allocate new one for new size */
12int* ints2 = lwmem_malloc(13 * sizeof(*ints)); /* Allocate memory for 13 integers */
13if (ints2 == NULL) {
14 printf("Allocation failed ints2!\r\n");
15 return -1;
16}
17
18printf("ints2 allocated for 13 integers\r\n");
19lwmem_debug_free(); /* This is debug function for sake of this example */
20
21/* Copy content of 12-integers to 13-integers long array */
22memcpy(ints2, ints, 12 * sizeof(12));
23
24/* Free first block */
25lwmem_free(ints); /* Free memory */
26ints = ints2; /* Use ints2 as new array now */
27ints2 = NULL; /* Set it to NULL to prevent accessing same memory from different pointers */
28
29printf("old ints freed\r\n");
30lwmem_debug_free(); /* This is debug function for sake of this example */
31
32/* Do not forget to free it when not used anymore */
33lwmem_free_s(&ints);
34
35printf("ints and ints2 freed\r\n");
36lwmem_debug_free(); /* This is debug function for sake of this example */

When executed on test machine, it prints:

Custom reallocation output

ints allocated for 12 integers

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 64 bytes

B 0: A: 0x00B5B160, S: 0, next B: 0x00B5B558; Start block
B 1: A: 0x00B5B558, S: 64, next B: 0x00B5B598
B 2: A: 0x00B5B598, S: 0, next B: 0x00000000; End of region

ints2 allocated for 13 integers

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 0 bytes

B 0: A: 0x00B5B160, S: 0, next B: 0x00B5B598; Start block
B 1: A: 0x00B5B598, S: 0, next B: 0x00000000; End of region

old ints freed

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 56 bytes

B 0: A: 0x00B5B160, S: 0, next B: 0x00B5B520; Start block
B 1: A: 0x00B5B520, S: 56, next B: 0x00B5B598
B 2: A: 0x00B5B598, S: 0, next B: 0x00000000; End of region

ints and ints2 freed

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 120 bytes

B 0: A: 0x00B5B160, S: 0, next B: 0x00B5B520; Start block
B 1: A: 0x00B5B520, S: 120, next B: 0x00B5B598
B 2: A: 0x00B5B598, S: 0, next B: 0x00000000; End of region

Outcome of the debug messages:

	Memory was successfully allocated for 12 integers, it took 56 bytes

	Memory was successfully allocated for another 13 integers , it took 64 bytes

	There is no more free memory available

	First 12 integers array was successfully freed, manager has 56 bytes of free memory

	Second 13 integers block was successfully freed, manager has all 120 bytes available for new allocations

This was therefore successful custom reallocation from 12 to 13 integers.
Next step is to verify what would happen when application wants to reallocate to 15 integers instead.
When same code is executed (but with 15 instead of 12), it prints:

Custom reallocation for 15 integers

ints allocated for 12 integers

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 64 bytes

B 0: A: 0x00D2B160, S: 0, next B: 0x00D2B558; Start block
B 1: A: 0x00D2B558, S: 64, next B: 0x00D2B598
B 2: A: 0x00D2B598, S: 0, next B: 0x00000000; End of region

Allocation failed ints2!

Oooops! It is not anymore possible to allocate new block for new 15 integers as there was no available block with at least 15 * sizeof(int) + metadata_size bytes of free memory.

Note

With this reallocation approach, maximal size of application block is only 50% of region size. This is not the most effective memory manager!

Fortunately there is a solution. Every time application wants to resize existing block, manager tries to manipulate existing block and shrink or expand it.

Shrink existing block

Easiest reallocation algorithm is when application wants to decrease size of previously allocated memory.
When this is the case, manager only needs to change the size of existing block to lower value.

Shrink existing block to smaller size

 1int* ints, *ints2;
 2
 3ints = lwmem_malloc(15 * sizeof(*ints)); /* Allocate memory for 15 integers */
 4if (ints == NULL) {
 5 printf("Allocation failed ints!\r\n");
 6 return -1;
 7}
 8printf("ints allocated for 15 integers\r\n");
 9lwmem_debug_free(); /* This is debug function for sake of this example */
10
11/* Now reallocte ints and write result to new variable */
12ints2 = lwmem_realloc(ints, 12 * sizeof(*ints));
13if (ints == NULL) {
14 printf("Allocation failed ints2!\r\n");
15 return -1;
16}
17printf("ints re-allocated for 12 integers\r\n");
18lwmem_debug_free(); /* This is debug function for sake of this example */
19
20/* ints is successfully reallocated and it is no longer valid pointer to read/write from/to */
21
22/* For the sake of example, let's test pointers */
23if (ints2 == ints) {
24	printf("New block reallocated to the same address as previous one\r\n");
25} else {
26	printf("New block reallocated to new address\r\n");
27}
28
29/* Free ints2 */
30lwmem_free_s(&ints2);
31/* ints is already freed by successful realloc function */
32ints = NULL; /* It is enough to set it to NULL */
33
34lwmem_debug_free(); /* This is debug function for sake of this example */

When executed on test machine, it prints:

Shrink existing block to smaller size output

ints allocated for 15 integers

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 52 bytes

B 0: A: 0x00B6B160, S: 0, next B: 0x00B6B564; Start block
B 1: A: 0x00B6B564, S: 52, next B: 0x00B6B598
B 2: A: 0x00B6B598, S: 0, next B: 0x00000000; End of region

ints re-allocated for 12 integers

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 64 bytes

B 0: A: 0x00B6B160, S: 0, next B: 0x00B6B558; Start block
B 1: A: 0x00B6B558, S: 64, next B: 0x00B6B598
B 2: A: 0x00B6B598, S: 0, next B: 0x00000000; End of region

New block reallocated to the same address as previous one

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 120 bytes

B 0: A: 0x00B6B160, S: 0, next B: 0x00B6B520; Start block
B 1: A: 0x00B6B520, S: 120, next B: 0x00B6B598
B 2: A: 0x00B6B598, S: 0, next B: 0x00000000; End of region

Outcome of our reallocation:

	Memory was successfully allocated for 15 integers, it took 68 bytes; part A on image

	Memory was successfully re-allocated to 12 integers, now it takes 56 bytes, part B on image

	In both cases on image, final returned memory points to the same address

	Manager does not need to copy data from existing memory to new address as it is the same memory used in both cases

	Empty block start address has been modified and its size has been increased, part B on image

	Reallocated block was successfully freed, manager has all 120 bytes for new allocations

Tip

This was a success now, much better.

It is not always possible to increase block size of next free block on linked list.
Consider new example and dedicated image below.

[image: Shrinking fragmented memory block]Shrinking fragmented memory block

Shrink fragmented memory block

 1void* ptr1, *ptr2, *ptr3, *ptr4, *ptrt;
 2
 3/* We are now at case A */
 4printf("State at case A\r\n");
 5lwmem_debug_free(); /* This is debug function for sake of this example */
 6
 7/* Each ptr points to its own block of allocated data */
 8/* Each block size is 24 bytes; 16 for user data and 8 for metadata */
 9ptr1 = lwmem_malloc(16);
10ptr2 = lwmem_malloc(16);
11ptr3 = lwmem_malloc(16);
12ptr4 = lwmem_malloc(16);
13
14/* We are now at case B */
15printf("State at case B\r\n");
16lwmem_debug_free(); /* This is debug function for sake of this example */
17
18/* Reallocate ptr1, decrease its size to 12 user bytes */
19/* Now we expect block size to be 20; 12 for user data and 8 for metadata */
20ptrt = lwmem_realloc(ptr1, 12);
21if (ptrt == NULL) {
22 ptr1 = ptrt;
23}
24
25printf("State after first realloc\r\n");
26lwmem_debug_free(); /* This is debug function for sake of this example */
27
28/* At this point we are still at case B */
29/* There was no modification of internal structure */
30/* Difference between existing and new size (16 - 12 = 4) is too small
31 to create new empty block, therefore block it is left unchanged */
32
33/* Reallocate again, now to new size of 4 bytes */
34/* Now we expect block size to be 16; 8 for user data and 8 for metadata */
35ptrt = lwmem_realloc(ptr1, 8);
36printf("State at case C\r\n");
37lwmem_debug_free(); /* This is debug function for sake of this example */
38
39/* We are now at case C */
40
41/* Now free all memories */

When executed on test machine, it prints:

Shrink fragmented memory block output

State at case A

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 120 bytes

B 0: A: 0x00E7B160, S: 0, next B: 0x00E7B520; Start block
B 1: A: 0x00E7B520, S: 120, next B: 0x00E7B598
B 2: A: 0x00E7B598, S: 0, next B: 0x00000000; End of region

State at case B

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 24 bytes

B 0: A: 0x00E7B160, S: 0, next B: 0x00E7B580; Start block
B 1: A: 0x00E7B580, S: 24, next B: 0x00E7B598
B 2: A: 0x00E7B598, S: 0, next B: 0x00000000; End of region

State after first realloc

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 24 bytes

B 0: A: 0x00E7B160, S: 0, next B: 0x00E7B580; Start block
B 1: A: 0x00E7B580, S: 24, next B: 0x00E7B598
B 2: A: 0x00E7B598, S: 0, next B: 0x00000000; End of region

State at case C

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 32 bytes

B 0: A: 0x00E7B160, S: 0, next B: 0x00E7B530; Start block
B 1: A: 0x00E7B530, S: 8, next B: 0x00E7B580
B 2: A: 0x00E7B580, S: 24, next B: 0x00E7B598
B 3: A: 0x00E7B598, S: 0, next B: 0x00000000; End of region

Outcome of this example:

	Size of all 4 blocks is 24 bytes; 16 for user data, 8 for metadata

	Reallocating block first time from 16 to 12 user data bytes did not affect internal memory structure

	It is not possible to create new empty block as it would be too small, only 4 bytes available, minimum is 8 bytes for meta data

	It is not possible to enlarge next empty block due to current and next empty do not create contiguous block

	Block is internally left unchanged

	Reallocating block second time to 8 bytes was a success

	Difference between old and new size is 8 bytes which is enough for new empty block

	Its size is 8 bytes, effectively 0 for user data due to meta size

Shrink existing block - summary

When reallocating already allocated memory block, one of 3 cases will happen:

	Case 1: When current block and next free block could create contigouos block of memory, current block is decreased (size parameter) and next free is enlarged by the size difference

	Case 2: When difference between current size and new size is more or equal to minimal size for new empty block, new empty block is created with size current_size - new_size and added to list of free blocks

	Case 3: When difference between current size and new size is less than minimal size for new empty block, block is left unchanged

Enlarge existing block

Now that you master procedure to shrink (or decrease) size of existing allocated memory block, it is time to understand how to enlarge it.
Things here are more complicated, however, they are still easy to understand.

Manager covers 3 potential cases:

	Case 1: Increase size of currently allocated block

	Case 2: Merge previous empty block with existing one and shift data up

	Case 3: Block before and after existing block together create contiguous block of memory

Free block after + allocated block create one big contiguous block

[image: *Free block* after + *allocated block* create one big contiguous block]Free block after + allocated block create one big contiguous block

Enlarge existing block

 1void* ptr1, *ptr2;
 2
 3/* Allocate initial block */
 4ptr1 = lwmem_malloc(24);
 5
 6/* We assume allocation is successful */
 7
 8printf("State at case 1a\r\n");
 9lwmem_debug_free(); /* This is debug function for sake of this example */
10
11/* Now let's reallocate ptr1 */
12ptr2 = lwmem_realloc(ptr1, 32);
13
14printf("State at case 1b\r\n");
15lwmem_debug_free(); /* This is debug function for sake of this example */

When executed on test machine, it prints:

Enlarge existing block output

State at case 1a

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 88 bytes

B 0: A: 0x00CBB160, S: 0, next B: 0x00CBB540; Start block
B 1: A: 0x00CBB540, S: 88, next B: 0x00CBB598
B 2: A: 0x00CBB598, S: 0, next B: 0x00000000; End of region

State at case 1b

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 80 bytes

B 0: A: 0x00CBB160, S: 0, next B: 0x00CBB548; Start block
B 1: A: 0x00CBB548, S: 80, next B: 0x00CBB598
B 2: A: 0x00CBB598, S: 0, next B: 0x00000000; End of region

	Allocation for first block of memory (24 user bytes) uses 32 bytes of data

	Reallocation is successful, block has been extended to 40 bytes and next free block has been shrinked down to 80 bytes

Free block before + allocated block create one big contiguous block

[image: *Free block* before + *allocated block* create one big contiguous block]Free block before + allocated block create one big contiguous block

Enlarge existing block

 1void* ptr1, *ptr2;
 2
 3/* Allocate initial blocks */
 4ptr2 = lwmem_malloc(80);
 5ptr1 = lwmem_malloc(24);
 6lwmem_free_s(&ptr2); /* Free first block and mark it free */
 7
 8/* We assume allocation is successful */
 9
10printf("State at case 2a\r\n");
11lwmem_debug_free(); /* This is debug function for sake of this example */
12
13/* Now let's reallocate ptr1 */
14ptr2 = lwmem_realloc(ptr1, 32);
15
16printf("State at case 2b\r\n");
17lwmem_debug_free(); /* This is debug function for sake of this example */

When executed on test machine, it prints:

Enlarge existing block output

State at case 2a

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 88 bytes

B 0: A: 0x0135B160, S: 0, next B: 0x0135B520; Start block
B 1: A: 0x0135B520, S: 88, next B: 0x0135B598
B 2: A: 0x0135B598, S: 0, next B: 0x00000000; End of region

State at case 2b

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 80 bytes

B 0: A: 0x0135B160, S: 0, next B: 0x0135B548; Start block
B 1: A: 0x0135B548, S: 80, next B: 0x0135B598
B 2: A: 0x0135B598, S: 0, next B: 0x00000000; End of region

	First application allocates big block (88 bytes), followed by smaller block (32 bytes)

	Application then frees big block to mark it as free. This is effectively state 2a

	During reallocation, manager did not find suitable block after current block, but it found suitable block before current block:

	Empty block and allocated block are temporary merged to one big block (120 bytes)

	Content of allocated block is shifted up to beginning of new big block

	Big block is then splitted to required size, the rest is marked as free

	This is effectively state 2b

Free block before + free block after + allocated block create one big contiguous block

When application makes many allocations and frees of memory, there is a high risk of memory fragmentations.
Essentially small chunks of allocated memory prevent manager to allocate new, fresh, big block of memory.

When it comes to reallocating of existing block, it may happen that first free block after and current block create a contiguous block, but its combined size is not big enough. Same could happen with last block before + current block. However, it may be possible to combine free block before + current block + free block after current block together.

[image: *Free block* before + *free block* after + *allocated block* create one big contiguous block]Free block before + free block after + allocated block create one big contiguous block

In this example manager has always 2 allocated blocks and application always wants to reallocate green block.
Red block is acting as an obstacle to show different application use cases.

Note

Image shows 4 use cases. For each of them, case labeled with 3 is initial state.

Initial state 3 is generated using C code:

Initial state of blocks within memory

 1void* ptr1, *ptr2, *ptr3, *ptr4;
 2
 3/* Allocate 4 blocks */
 4ptr1 = lwmem_malloc(8);
 5ptr2 = lwmem_malloc(4);
 6ptr3 = lwmem_malloc(4);
 7ptr4 = lwmem_malloc(16);
 8/* Free first and third block */
 9lwmem_free_s(&ptr1);
10lwmem_free_s(&ptr3);
11
12/* We assume allocation is successful */
13
14printf("Initial state at case 3\r\n");
15lwmem_debug_free(); /* This is debug function for sake of this example */

When executed on test machine, it prints:

Initial state of blocks within memory output

Initial state at case 3

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 84 bytes

B 0: A: 0x013BB160, S: 0, next B: 0x013BB520; Start block
B 1: A: 0x013BB520, S: 16, next B: 0x013BB53C
B 2: A: 0x013BB53C, S: 12, next B: 0x013BB560
B 3: A: 0x013BB560, S: 56, next B: 0x013BB598
B 4: A: 0x013BB598, S: 0, next B: 0x00000000; End of region

Tip

Image shows (and log confirms) 3 free slots of 16, 12 and 56 bytes in size respectively.

	Case 3a: Application tries to reallocate green block from 12 to 16 bytes

	Reallocation is successful, there is a free block just after and green block is successfully enlarged

	Block after is shrinked from 12 to 8 bytes

	Code example (follows initial state code example)

Enlarge of existing block for case 3A

1/* Now reallocate ptr2 */
2ptr2 = lwmem_realloc(ptr2, 8);
3
4printf("New state at case 3a\r\n");
5lwmem_debug_free(); /* This is debug function for sake of this example */

	When executed on test machine, it prints:

Enlarge of existing block for case 3A output

New state at case 3a

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 80 bytes

B 0: A: 0x0133B160, S: 0, next B: 0x0133B5C0; Start block
B 1: A: 0x0133B5C0, S: 16, next B: 0x0133B5E0
B 2: A: 0x0133B5E0, S: 8, next B: 0x0133B600
B 3: A: 0x0133B600, S: 56, next B: 0x0133B638
B 4: A: 0x0133B638, S: 0, next B: 0x00000000; End of region

	Case 3b: Application tries to reallocate green block from 12 to 28 bytes

	Block after green is not big enough to merge them to one block (12 + 12 < 28)

	Block before green is big enough (16 + 12 >= 28)

	Green block is merged with previous free block and content is shifted to the beginning of new block

Enlarge of existing block for case 3B

1/* Now reallocate ptr2 */
2ptr2 = lwmem_realloc(ptr2, 20);
3
4printf("New state at case 3b\r\n");
5lwmem_debug_free(); /* This is debug function for sake of this example */

	When executed on test machine, it prints:

Enlarge of existing block for case 3B output

New state at case 3b

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 68 bytes

B 0: A: 0x0103B160, S: 0, next B: 0x0103B53C; Start block
B 1: A: 0x0103B53C, S: 12, next B: 0x0103B560
B 2: A: 0x0103B560, S: 56, next B: 0x0103B598
B 3: A: 0x0103B598, S: 0, next B: 0x00000000; End of region

	Case 3c: Application tries to reallocate green block from 12 to 32 bytes

	Block after green is not big enough to merge them to one block (12 + 12 < 32)

	Block before green is also not big enough (12 + 16 < 32)

	All three blocks together are big enough (16 + 12 + 12 >= 32)

	All blocks are effectively merged together and there is a new temporary block with its size set to 40 bytes

	Content of green block is shifted to the beginning of new block

	New block is limited to 32 bytes, keeping 8 bytes marked as free at the end

Enlarge of existing block for case 3C

1/* Now reallocate ptr2 */
2ptr2 = lwmem_realloc(ptr2, 24);
3
4printf("New state at case 3c\r\n");
5lwmem_debug_free(); /* This is debug function for sake of this example */

	When executed on test machine, it prints:

Enlarge of existing block for case 3C output

New state at case 3c

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 64 bytes

B 0: A: 0x011AB160, S: 0, next B: 0x011AB540; Start block
B 1: A: 0x011AB540, S: 8, next B: 0x011AB560
B 2: A: 0x011AB560, S: 56, next B: 0x011AB598
B 3: A: 0x011AB598, S: 0, next B: 0x00000000; End of region

	Case 3d: Application tries to reallocate green block from 12 to 44 bytes

	None of the methods (3a - 3c) are available as blocks are too small

	Completely new block is created and content is copied to it

	Existing block is marked as free. All 3 free blocks create big contiguous block, they are merged to one block with its size set to 40

Enlarge of existing block for case 3D

1/* Now reallocate ptr2 */
2ptr2 = lwmem_realloc(ptr2, 36);
3
4printf("New state at case 3d\r\n");
5lwmem_debug_free(); /* This is debug function for sake of this example */

	When executed on test machine, it prints:

Enlarge of existing block for case 3D output

New state at case 3d

B = Free block; A = Address of free block; S = Free size
Allocation available bytes: 52 bytes

B 0: A: 0x002EB160, S: 0, next B: 0x002EB520; Start block
B 1: A: 0x002EB520, S: 40, next B: 0x002EB58C
B 2: A: 0x002EB58C, S: 12, next B: 0x002EB598
B 3: A: 0x002EB598, S: 0, next B: 0x00000000; End of region

Full test code with assert

Advanced debugging features have been added for development purposes.
It is now possible to simulate different cases within single executable, by storing states to different memories.

Example has been implemented for WIN32 and relies on dynamic allocation using malloc standard C function for main block data preparation.

How it works:

	Code prepares state 3 and saves memory to temporary memory for future restore

	Code restores latest saved state (case 3) and executes case 3a

	Code restores latest saved state (case 3) and executes case 3b

	Code restores latest saved state (case 3) and executes case 3c

	Code restores latest saved state (case 3) and executes case 3d

Initial state 3 is generated using C code:

Full test code with asserts

 1#define ASSERT(x) do { \
 2 if (!(x)) { \
 3 printf("Assert failed with condition (" # x ")\r\n"); \
 4 } else {\
 5 printf("Assert passed with condition (" # x ")\r\n"); \
 6 }\
 7} while (0)
 8
 9/* For debug purposes */
10lwmem_region_t* regions_used;
11size_t regions_count = 1; /* Use only 1 region for debug purposes of non-free areas */
12
13int
14main(void) {
15 uint8_t* ptr1, *ptr2, *ptr3, *ptr4;
16 uint8_t* rptr1, *rptr2, *rptr3, *rptr4;
17
18 /* Create regions for debug purpose */
19 if (!lwmem_debug_create_regions(®ions_used, regions_count, 128)) {
20 printf("Cannot allocate memory for regions for debug purpose!\r\n");
21 return -1;
22 }
23 lwmem_assignmem(regions_used);
24 printf("Manager is ready!\r\n");
25 lwmem_debug_print(1, 1);
26
27 /* Test case 1, allocate 3 blocks, each of different size */
28 /* We know that sizeof internal metadata block is 8 bytes on win32 */
29 printf("\r\n\r\nAllocating 4 pointers and freeing first and third..\r\n");
30 ptr1 = lwmem_malloc(8);
31 ptr2 = lwmem_malloc(4);
32 ptr3 = lwmem_malloc(4);
33 ptr4 = lwmem_malloc(16);
34 lwmem_free(ptr1); /* Free but keep value for future comparison */
35 lwmem_free(ptr3); /* Free but keep value for future comparison */
36 lwmem_debug_print(1, 1);
37 printf("Debug above is effectively state 3\r\n");
38 lwmem_debug_save_state(); /* Every restore operations rewinds here */
39
40 /* We always try to reallocate pointer ptr2 */
41
42 /* Create 3a case */
43 printf("\r\n--\r\n");
44 lwmem_debug_restore_to_saved();
45 printf("State 3a\r\n");
46 rptr1 = lwmem_realloc(ptr2, 8);
47 lwmem_debug_print(1, 1);
48 ASSERT(rptr1 == ptr2);
49
50 /* Create 3b case */
51 printf("\r\n--\r\n");
52 lwmem_debug_restore_to_saved();
53 printf("State 3b\r\n");
54 rptr2 = lwmem_realloc(ptr2, 20);
55 lwmem_debug_print(1, 1);
56 ASSERT(rptr2 == ptr2);
57
58 /* Create 3c case */
59 printf("\r\n--\r\n");
60 lwmem_debug_restore_to_saved();
61 printf("State 3c\r\n");
62 rptr3 = lwmem_realloc(ptr2, 24);
63 lwmem_debug_print(1, 1);
64 ASSERT(rptr3 == ptr1);
65
66 /* Create 3d case */
67 printf("\r\n--\r\n");
68 lwmem_debug_restore_to_saved();
69 printf("State 3d\r\n");
70 rptr4 = lwmem_realloc(ptr2, 36);
71 lwmem_debug_print(1, 1);
72 ASSERT(rptr4 != ptr1 && rptr4 != ptr2 && rptr4 != ptr3 && rptr4 != ptr4);
73
74 return 0;
75}

When executed on test machine, it prints:

Full test code with asserts output

Manager is ready!
|-------|----------|--------|------|------------------|----------------|
Block	Address	IsFree	Size	MaxUserAllocSize	Meta
0	00179154	0	0	0	Start block
1	0034A508	1	120	112	Free block
2	0034A580	0	0	0	End of region
-------	----------	--------	------	------------------	----------------

Allocating 4 pointers and freeing first and third..
|-------|----------|--------|------|------------------|----------------|
Block	Address	IsFree	Size	MaxUserAllocSize	Meta
0	00179154	0	0	0	Start block
1	0034A508	1	16	8	Free block
2	0034A518	0	12	0	Allocated block
3	0034A524	1	12	4	Free block
4	0034A530	0	24	0	Allocated block
5	0034A548	1	56	48	Free block
6	0034A580	0	0	0	End of region
-------	----------	--------	------	------------------	----------------
Debug above is effectively state 3
 -- > Current state saved!

--
 -- > State restored to last saved!
State 3a
|-------|----------|--------|------|------------------|----------------|
Block	Address	IsFree	Size	MaxUserAllocSize	Meta
0	00179154	0	0	0	Start block
1	0034A508	1	16	8	Free block
2	0034A518	0	16	0	Allocated block
3	0034A528	1	8	0	Free block
4	0034A530	0	24	0	Allocated block
5	0034A548	1	56	48	Free block
6	0034A580	0	0	0	End of region
-------	----------	--------	------	------------------	----------------
Assert passed with condition (rptr1 == ptr2)

--
 -- > State restored to last saved!
State 3b
|-------|----------|--------|------|------------------|----------------|
Block	Address	IsFree	Size	MaxUserAllocSize	Meta
0	00179154	0	0	0	Start block
1	0034A508	0	28	0	Allocated block
2	0034A524	1	12	4	Free block
3	0034A530	0	24	0	Allocated block
4	0034A548	1	56	48	Free block
5	0034A580	0	0	0	End of region
-------	----------	--------	------	------------------	----------------
Assert failed with condition (rptr2 == ptr2)

--
 -- > State restored to last saved!
State 3c
|-------|----------|--------|------|------------------|----------------|
Block	Address	IsFree	Size	MaxUserAllocSize	Meta
0	00179154	0	0	0	Start block
1	0034A508	0	32	0	Allocated block
2	0034A528	1	8	0	Free block
3	0034A530	0	24	0	Allocated block
4	0034A548	1	56	48	Free block
5	0034A580	0	0	0	End of region
-------	----------	--------	------	------------------	----------------
Assert passed with condition (rptr3 == ptr1)

--
 -- > State restored to last saved!
State 3d
|-------|----------|--------|------|------------------|----------------|
Block	Address	IsFree	Size	MaxUserAllocSize	Meta
0	00179154	0	0	0	Start block
1	0034A508	1	40	32	Free block
2	0034A530	0	24	0	Allocated block
3	0034A548	0	44	0	Allocated block
4	0034A574	1	12	4	Free block
5	0034A580	0	0	0	End of region
-------	----------	--------	------	------------------	----------------
Assert passed with condition (rptr4 != ptr1 && rptr4 != ptr2 && rptr4 != ptr3 && rptr4 != ptr4)

Thread safety

With default configuration, LwMEM library is not thread safe.
This means whenever it is used with operating system, user must resolve it with care.

Library has locking mechanism support for thread safety, which needs to be enabled manually.

Tip

To enable thread-safety support, parameter LWMEM_CFG_OS must be set to 1.
Please check Configuration for more information about other options.

After thread-safety features has been enabled, it is necessary to implement
4 low-level system functions.

Tip

System function template example is available in lwmem/src/system/ folder.

Example code for CMSIS-OS V2

Note

Check System functions section for function description

System function implementation for CMSIS-OS based operating systems

 1/**
 2 * \file lwmem_sys_cmsis_os.c
 3 * \brief System functions for CMSIS-OS based operating system
 4 */
 5
 6/*
 7 * Copyright (c) 2020 Tilen MAJERLE
 8 *
 9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwMEM - Lightweight dynamic memory manager library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v2.0.0
33 */
34#include "system/lwmem_sys.h"
35
36#if LWMEM_CFG_OS && !__DOXYGEN__
37
38#include "cmsis_os.h"
39
40uint8_t
41lwmem_sys_mutex_create(LWMEM_CFG_OS_MUTEX_HANDLE* m) {
42 const osMutexAttr_t attr = {
43 .name = "lwmem_mutex",
44 };
45 return (*m = osMutexNew(&attr)) != NULL;
46}
47
48uint8_t
49lwmem_sys_mutex_isvalid(LWMEM_CFG_OS_MUTEX_HANDLE* m) {
50 return *m != NULL;
51}
52
53uint8_t
54lwmem_sys_mutex_wait(LWMEM_CFG_OS_MUTEX_HANDLE* m) {
55 return osMutexAcquire(*m, osWaitForever) == osOK;
56}
57
58uint8_t
59lwmem_sys_mutex_release(LWMEM_CFG_OS_MUTEX_HANDLE* m) {
60 return osMutexRelease(*m) == osOK;
61}
62
63#endif /* LWMEM_CFG_OS && !__DOXYGEN__ */

API reference

List of all the modules:

	LwMEM

	Configuration

	System functions

LwMEM

	
group LWMEM

	Lightweight dynamic memory manager.

Defines

	
LWMEM_ARRAYSIZE(x)

	Get size of statically allocated array.

	Parameters

	
	x – [in] Object to get array size of

	Returns

	Number of elements in array

	
lwmem_assignmem(regions)

	
Note

This is a wrapper for lwmem_assignmem_ex function. It operates in default LwMEM instance and uses first available region for memory operations

	Parameters

	
	regions – [in] Pointer to array of regions with address and respective size. Regions must be in increasing order (start address) and must not overlap in-between. Last region entry must have address NULL and size set to 0 //Example definition
lwmem_region_t regions[] = {
 { (void *)0x10000000, 0x1000 }, //Region starts at address 0x10000000 and is 0x1000 bytes long
 { (void *)0x20000000, 0x2000 }, //Region starts at address 0x20000000 and is 0x2000 bytes long
 { (void *)0x30000000, 0x3000 }, //Region starts at address 0x30000000 and is 0x3000 bytes long
 { NULL, 0 } //Array termination indicator
}

	Returns

	0 on failure, number of final regions used for memory manager on success

	
lwmem_malloc(size)

	
Note

This is a wrapper for lwmem_malloc_ex function. It operates in default LwMEM instance and uses first available region for memory operations

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	size – [in] Size to allocate in units of bytes

	Returns

	Pointer to allocated memory on success, NULL otherwise

	
lwmem_calloc(nitems, size)

	
Note

This is a wrapper for lwmem_calloc_ex function. It operates in default LwMEM instance and uses first available region for memory operations

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	nitems – [in] Number of elements to be allocated

	size – [in] Size of each element, in units of bytes

	Returns

	Pointer to allocated memory on success, NULL otherwise

	
lwmem_realloc(ptr, size)

	
Note

This is a wrapper for lwmem_realloc_ex function. It operates in default LwMEM instance and uses first available region for memory operations

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	ptr – [in] Memory block previously allocated with one of allocation functions. It may be set to NULL to create new clean allocation

	size – [in] Size of new memory to reallocate

	Returns

	Pointer to allocated memory on success, NULL otherwise

	
lwmem_realloc_s(ptrptr, size)

	
Note

This is a wrapper for lwmem_realloc_s_ex function. It operates in default LwMEM instance and uses first available region for memory operations

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	ptrptr – [in] Pointer to pointer to allocated memory. Must not be set to NULL. If reallocation is successful, it modifies pointer’s pointing address, or sets it to NULL in case of free operation

	size – [in] New requested size in bytes

	Returns

	1 if successfully reallocated, 0 otherwise

	
lwmem_free(ptr)

	
Note

This is a wrapper for lwmem_free_ex function. It operates in default LwMEM instance and uses first available region for memory operations

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	ptr – [in] Memory to free. NULL pointer is valid input

	
lwmem_free_s(ptrptr)

	
Note

This is a wrapper for lwmem_free_s_ex function. It operates in default LwMEM instance and uses first available region for memory operations

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	ptrptr – [in] Pointer to pointer to allocated memory. When set to non NULL, pointer is freed and set to NULL

	
lwmem_get_size(ptr)

	
Note

This is a wrapper for lwmem_get_size_ex function. It operates in default LwMEM instance and uses first available region for memory operations

	Parameters

	
	ptr – [in] Pointer to allocated memory

	Returns

	Block size for user in units of bytes

Functions

	
size_t lwmem_assignmem_ex(lwmem_t *const lw, const lwmem_region_t *regions)

	Initializes and assigns user regions for memory used by allocator algorithm.

Note

This function is not thread safe when used with operating system. It must be called only once to setup memory regions

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance

	regions – [in] Pointer to array of regions with address and respective size. Regions must be in increasing order (start address) and must not overlap in-between. Last region entry must have address NULL and size set to 0 //Example definition
lwmem_region_t regions[] = {
 { (void *)0x10000000, 0x1000 }, //Region starts at address 0x10000000 and is 0x1000 bytes long
 { (void *)0x20000000, 0x2000 }, //Region starts at address 0x20000000 and is 0x2000 bytes long
 { (void *)0x30000000, 0x3000 }, //Region starts at address 0x30000000 and is 0x3000 bytes long
 { NULL, 0 } //Array termination indicator
}

	Returns

	0 on failure, number of final regions used for memory manager on success

	
void *lwmem_malloc_ex(lwmem_t *const lw, const lwmem_region_t *region, const size_t size)

	Allocate memory of requested size in specific lwmem instance and optional region.

Note

This is an extended malloc version function declaration to support advanced features

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance

	region – [in] Optional region instance within LwMEM instance to force allocation from. Set to NULL to use any region within LwMEM instance

	size – [in] Number of bytes to allocate

	Returns

	Pointer to allocated memory on success, NULL otherwise

	
void *lwmem_calloc_ex(lwmem_t *const lw, const lwmem_region_t *region, const size_t nitems, const size_t size)

	Allocate contiguous block of memory for requested number of items and its size in specific lwmem instance and region.

It resets allocated block of memory to zero if allocation is successful

Note

This is an extended calloc version function declaration to support advanced features

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance

	region – [in] Optional region instance within LwMEM instance to force allocation from. Set to NULL to use any region within LwMEM instance

	nitems – [in] Number of elements to be allocated

	size – [in] Size of each element, in units of bytes

	Returns

	Pointer to allocated memory on success, NULL otherwise

	
void *lwmem_realloc_ex(lwmem_t *const lw, const lwmem_region_t *region, void *const ptr, const size_t size)

	Reallocates already allocated memory with new size in specific lwmem instance and region.

Function behaves differently, depends on input parameter of ptr and size:

	ptr == NULL; size == 0: Function returns NULL, no memory is allocated or freed

	ptr == NULL; size > 0: Function tries to allocate new block of memory with size length, equivalent to malloc(region, size)

	ptr != NULL; size == 0: Function frees memory, equivalent to free(ptr)

	ptr != NULL; size > 0: Function tries to allocate new memory of copy content before returning pointer on success

Note

This function may only be used with allocations returned by any of _from API functions

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance

	region – [in] Pointer to region to allocate from. Set to NULL to use any region within LwMEM instance. Instance must be the same as used during allocation procedure

	ptr – [in] Memory block previously allocated with one of allocation functions. It may be set to NULL to create new clean allocation

	size – [in] Size of new memory to reallocate

	Returns

	Pointer to allocated memory on success, NULL otherwise

	
uint8_t lwmem_realloc_s_ex(lwmem_t *const lw, const lwmem_region_t *region, void **const ptr, const size_t size)

	Safe version of realloc_ex function.

After memory is reallocated, input pointer automatically points to new memory to prevent use of dangling pointers. When reallocation is not successful, original pointer is not modified and application still has control of it.

It is advised to use this function when reallocating memory.

Function behaves differently, depends on input parameter of ptr and size:

	ptr == NULL: Invalid input, function returns 0

	*ptr == NULL; size == 0: Function returns 0, no memory is allocated or freed

	*ptr == NULL; size > 0: Function tries to allocate new block of memory with size length, equivalent to malloc(size)

	*ptr != NULL; size == 0: Function frees memory, equivalent to free(ptr), sets input pointer pointing to NULL

	*ptr != NULL; size > 0: Function tries to reallocate existing pointer with new size and copy content to new block

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance

	region – [in] Pointer to region to allocate from. Set to NULL to use any region within LwMEM instance. Instance must be the same as used during allocation procedure

	ptr – [in] Pointer to pointer to allocated memory. Must not be set to NULL. If reallocation is successful, it modifies pointer’s pointing address, or sets it to NULL in case of free operation

	size – [in] New requested size in bytes

	Returns

	1 if successfully reallocated, 0 otherwise

	
void lwmem_free_ex(lwmem_t *const lw, void *const ptr)

	Free previously allocated memory using one of allocation functions in specific lwmem instance.

Note

This is an extended free version function declaration to support advanced features

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance. Instance must be the same as used during allocation procedure

	ptr – [in] Memory to free. NULL pointer is valid input

	
void lwmem_free_s_ex(lwmem_t *const lw, void **const ptr)

	Safe version of free function.

After memory is freed, input pointer is safely set to NULL to prevent use of dangling pointers.

It is advised to use this function when freeing memory.

Note

This function is thread safe when LWMEM_CFG_OS is enabled

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance. Instance must be the same as used during allocation procedure

	ptr – [in] Pointer to pointer to allocated memory. When set to non NULL, pointer is freed and set to NULL

	
size_t lwmem_get_size_ex(lwmem_t *const lw, void *ptr)

	Get user size of allocated memory.

	Parameters

	
	lw – [in] LwMEM instance. Set to NULL to use default instance. Instance must be the same as used during allocation procedure

	ptr – [in] Pointer to allocated memory

	Returns

	Block size for user in units of bytes

	
struct lwmem_block_t

	#include <lwmem.h>Memory block structure.

Public Members

	
struct lwmem_block *next

	Next free memory block on linked list. Set to LWMEM_BLOCK_ALLOC_MARK when block is allocated and in use

	
size_t size

	Size of block, including metadata part. MSB bit is set to 1 when block is allocated and in use, or 0 when block is considered free

	
struct lwmem_stats_t

	#include <lwmem.h>Statistics structure.

Public Members

	
uint32_t nr_alloc

	Number of all allocated blocks in single instance

	
uint32_t nr_free

	Number of frees in the LwMEM instance

	
struct lwmem_t

	#include <lwmem.h>LwMEM main structure.

Public Members

	
lwmem_block_t start_block

	Holds beginning of memory allocation regions

	
lwmem_block_t *end_block

	Pointer to the last memory location in regions linked list

	
size_t mem_available_bytes

	Memory size available for allocation

	
size_t mem_regions_count

	Number of regions used for allocation

	
LWMEM_CFG_OS_MUTEX_HANDLE mutex

	System mutex for OS

	
lwmem_stats_t stats

	Statistics

	
struct lwmem_region_t

	#include <lwmem.h>Memory region descriptor.

Public Members

	
void *start_addr

	Region start address

	
size_t size

	Size of region in units of bytes

Configuration

This is the default configuration of the middleware.
When any of the settings shall be modified, it shall be done in dedicated application config lwmem_opts.h file.

Note

Check Getting started for guidelines on how to create and use configuration file.

	
group LWMEM_OPT

	LwMEM options.

Defines

	
LWMEM_CFG_OS

	Enables 1 or disables 0 operating system support in the library.

Note

When LWMEM_CFG_OS is enabled, user must implement functions in System functions group.

	
LWMEM_CFG_OS_MUTEX_HANDLE

	Mutex handle type.

Note

This value must be set in case LWMEM_CFG_OS is set to 1. If data type is not known to compiler, include header file with definition before you define handle type

	
LWMEM_CFG_ALIGN_NUM

	Number of bits to align memory address and memory size.

Some CPUs do not offer unaligned memory access (Cortex-M0 as an example) therefore it is important to have alignment of data addresses and potentialy length of data

Note

This value must be a power of 2 for number of bytes. Usually alignment of 4 bytes fits to all processors.

	
LWMEM_CFG_CLEAN_MEMORY

	Enables 1 or disables 0 memory cleanup on free operation (or realloc).

It resets unused memory to 0x00 and prevents other applications seeing old data. It is disabled by default since it has performance penalties.

	
LWMEM_CFG_ENABLE_STATS

	Enables 1 or disables 0 statistics in the library.

System functions

System function are used in conjunction with thread safety.
Please check Thread safety section for more information

	
group LWMEM_SYS

	System functions when used with operating system.

Functions

	
uint8_t lwmem_sys_mutex_create(LWMEM_CFG_OS_MUTEX_HANDLE *m)

	Create a new mutex and assign value to handle.

	Parameters

	m – [out] Output variable to save mutex handle

	Returns

	1 on success, 0 otherwise

	
uint8_t lwmem_sys_mutex_isvalid(LWMEM_CFG_OS_MUTEX_HANDLE *m)

	Check if mutex handle is valid.

	Parameters

	m – [in] Mutex handle to check if valid

	Returns

	1 on success, 0 otherwise

	
uint8_t lwmem_sys_mutex_wait(LWMEM_CFG_OS_MUTEX_HANDLE *m)

	Wait for a mutex until ready (unlimited time)

	Parameters

	m – [in] Mutex handle to wait for

	Returns

	1 on success, 0 otherwise

	
uint8_t lwmem_sys_mutex_release(LWMEM_CFG_OS_MUTEX_HANDLE *m)

	Release already locked mutex.

	Parameters

	m – [in] Mutex handle to release

	Returns

	1 on success, 0 otherwise

Examples and demos

Various examples are provided for fast library evaluation on embedded systems. These are prepared and maintained for 2 platforms, but could be easily extended to more platforms:

	WIN32 examples, prepared as Visual Studio Community [https://visualstudio.microsoft.com/vs/community/] projects

	ARM Cortex-M examples for STM32, prepared as STM32CubeIDE [https://www.st.com/en/development-tools/stm32cubeide.html] GCC projects

Warning

Library is platform independent and can be used on any platform.

Example architectures

There are many platforms available today on a market, however supporting them all would be tough task for single person.
Therefore it has been decided to support (for purpose of examples) 2 platforms only, WIN32 and STM32.

WIN32

Examples for WIN32 are prepared as Visual Studio Community [https://visualstudio.microsoft.com/vs/community/] projects.
You can directly open project in the IDE, compile & debug.

STM32

Embedded market is supported by many vendors and STMicroelectronics is, with their STM32 [https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html] series of microcontrollers, one of the most important players.
There are numerous amount of examples and topics related to this architecture.

Examples for STM32 are natively supported with STM32CubeIDE [https://www.st.com/en/development-tools/stm32cubeide.html], an official development IDE from STMicroelectronics.

You can run examples on one of official development boards, available in repository examples.

Examples list

Here is a list of all examples coming with this library.

Tip

Examples are located in /examples/ folder in downloaded package.
Check Download library section to get your package.

LwMEM bare-metal

Simple example, not using operating system, showing basic configuration of the library.
It can be also called bare-metal implementation for simple applications

LwMEM OS

LwMEM library integrated as application memory manager with operating system.
It configurex mutual exclusion object mutex to allow multiple application threads accessing to LwMEM core functions

LwMEM multi regions

Multi regions example shows how to configure multiple linear regions to be applied to single LwMEM instance.
It uses simple varible array to demonstrate memory sections in embedded systems.

LwMEM multi instances & regions

This example shows how can application add custom (or more of them) instances for LwMEM memory management.
Each LwMEM instance has its own set of regions to work with.

LwMEM instances are between each-other completely isolated.

Index

 L

L

 	
 	LWMEM_ARRAYSIZE (C macro)

 	lwmem_assignmem (C macro)

 	lwmem_assignmem_ex (C++ function)

 	lwmem_block_t (C++ struct)

 	lwmem_block_t::next (C++ member)

 	lwmem_block_t::size (C++ member)

 	lwmem_calloc (C macro)

 	lwmem_calloc_ex (C++ function)

 	LWMEM_CFG_ALIGN_NUM (C macro)

 	LWMEM_CFG_CLEAN_MEMORY (C macro)

 	LWMEM_CFG_ENABLE_STATS (C macro)

 	LWMEM_CFG_OS (C macro)

 	LWMEM_CFG_OS_MUTEX_HANDLE (C macro)

 	lwmem_free (C macro)

 	lwmem_free_ex (C++ function)

 	lwmem_free_s (C macro)

 	lwmem_free_s_ex (C++ function)

 	lwmem_get_size (C macro)

 	lwmem_get_size_ex (C++ function)

 	lwmem_malloc (C macro)

 	lwmem_malloc_ex (C++ function)

 	
 	lwmem_realloc (C macro)

 	lwmem_realloc_ex (C++ function)

 	lwmem_realloc_s (C macro)

 	lwmem_realloc_s_ex (C++ function)

 	lwmem_region_t (C++ struct)

 	lwmem_region_t::size (C++ member)

 	lwmem_region_t::start_addr (C++ member)

 	lwmem_stats_t (C++ struct)

 	lwmem_stats_t::nr_alloc (C++ member)

 	lwmem_stats_t::nr_free (C++ member)

 	lwmem_sys_mutex_create (C++ function)

 	lwmem_sys_mutex_isvalid (C++ function)

 	lwmem_sys_mutex_release (C++ function)

 	lwmem_sys_mutex_wait (C++ function)

 	lwmem_t (C++ struct)

 	lwmem_t::end_block (C++ member)

 	lwmem_t::mem_available_bytes (C++ member)

 	lwmem_t::mem_regions_count (C++ member)

 	lwmem_t::mutex (C++ member)

 	lwmem_t::start_block (C++ member)

 	lwmem_t::stats (C++ member)

 _static/file.png

_static/plus.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 LwMEM branch-d005587 documentation

 		
 Getting started

 		
 Download library

 		
 Download from releases

 		
 Clone from Github

 		
 Add library to project

 		
 Configuration file

 		
 Minimal example code

 		
 User manual

 		
 How it works

 		
 Allocate at specific region

 		
 LwMEM instances

 		
 Reallocation algorithm

 		
 Shrink existing block

 		
 Enlarge existing block

 		
 Thread safety

 		
 API reference

 		
 LwMEM

 		
 Configuration

 		
 System functions

 		
 Examples and demos

 		
 Example architectures

 		
 WIN32

 		
 STM32

 		
 Examples list

 		
 LwMEM bare-metal

 		
 LwMEM OS

 		
 LwMEM multi regions

 		
 LwMEM multi instances & regions

_static/images/logo_tm.png

_static/images/logo_tm_full.png
majerle.eu

Knowledge sharing is caring

