

OneWire-UART documentation!

OneWire-UART is lightweight, platform independent library for Onewire protocol for embedded systems.

Download library · Github [https://github.com/MaJerle/onewire-uart]

Features

	Written in ANSI C99

	Platform independent, uses custom low-level layer for device drivers

	1-Wire protocol fits UART specifications at 9600 and 115200 bauds

	Hardware is responsible for timing characteristics
* Allows DMA on the high-performance microcontrollers

	Different device drivers included
* DS18x20 temperature sensor is natively supported

	Works with operating system due to hardware timing management
* Separate thread-safe API is available

	User friendly MIT license

Requirements

	C compiler

	Platform dependant drivers

	Few kB of volatile memory

Contribute

We always welcome new contributors. To be as efficient as possible, we recommend:

	Fork Github repository

	Respect C style & coding rules [https://github.com/MaJerle/c-code-style] used by the library

	Make a pull request to develop branch with new features or bug fixes

Alternatively you may:

	Report a bug

	Ask for a feature request

License

Copyright (c) 2019 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Table of contents

	Get started
	Download library

	Add library to project

	Configuration file

	User manual
	How it works

	Thread safety

	Hardware connection with sensor

	UART and 1-Wire timing relation

	API reference
	OneWire-UART

	Configuration

	Low-level functions

	System functions

	Device drivers

	Examples and demos
	Supported architectures

	Examples list

Get started

Download library

Library is primarly hosted on Github [https://github.com/MaJerle/onewire-uart].

	Download latest release from releases area [https://github.com/MaJerle/onewire-uart/releases] on Github

	Clone develop branch for latest development

Download from releases

All releases are available on Github releases releases area [https://github.com/MaJerle/onewire-uart/releases].

Clone from Github

First-time clone

	Download and install git if not already

	Open console and navigate to path in the system to clone repository to. Use command cd your_path

	Clone repository with one of available 3 options

	Run git clone --recurse-submodules https://github.com/MaJerle/onewire-uart command to clone entire repository, including submodules

	Run git clone --recurse-submodules --branch develop https://github.com/MaJerle/onewire-uart to clone development branch, including submodules

	Run git clone --recurse-submodules --branch master https://github.com/MaJerle/onewire-uart to clone latest stable branch, including submodules

	Navigate to examples directory and run favourite example

Update cloned to latest version

	Open console and navigate to path in the system where your resources repository is. Use command cd your_path

	Run git pull origin master --recurse-submodules command to pull latest changes and to fetch latest changes from submodules

	Run git submodule foreach git pull origin master to update & merge all submodules

Note

This is preferred option to use when you want to evaluate library and run prepared examples.
Repository consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root repository.

Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.

	Copy onewire_uart folder to your project

	Add onewire_uart/src/include folder to include path of your toolchain

	Add source files from onewire_uart/src/ folder to toolchain build

	Copy onewire_uart/src/include/ow/ow_config_template.h to project folder and rename it to ow_config.h

	Implement device drivers for UART hardware

	Build the project

Configuration file

Library comes with template config file, which can be modified according to needs.
This file shall be named ow_config.h and its default template looks like the one below:

Tip

Check Configuration section for possible configuration settings

/**
 * \file ow_config_template.h
 * \brief OneWire configuration file
 */

/*
 * Copyright (c) 2019 Tilen MAJERLE
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * This file is part of OneWire-UART library.
 *
 * Author: Tilen MAJERLE <tilen@majerle.eu>
 * Version: v2.0.0
 */
#ifndef OW_HDR_CONFIG_H
#define OW_HDR_CONFIG_H

/* Rename this file to "ow_config.h" for your application */

/*
 * Open "include/ow/ow_config_default.h" and
 * copy & replace here settings you want to change values
 */

/* After user configuration, call default config to merge config together */
#include "ow/ow_config_default.h"

#endif /* OW_HDR_CONFIG_H */

User manual

	How it works

	Thread safety

	Hardware connection with sensor
	TX and RX pins

	UART and 1-Wire timing relation

How it works

Thread safety

With default configuration, library is not thread safe.
This means whenever it is used with operating system, user must resolve it with care.

Library has locking mechanism support for thread safety, which needs to be enabled.

Tip

To enable thread-safety support, parameter OW_CFG_OS must be set to 1.
Please check Configuration for more information about other options.

After thread-safety features has been enabled, it is necessary to implement
4 low-level system functions.

Tip

System function template example is available in onewire_uart/src/system/ folder.

Example code for CMSIS-OS V2

Note

Check System functions section for function description

/**
 * \file ow_sys_cmsis_os.c
 * \brief System functions for CMSIS-OS based operating system
 */

/*
 * Copyright (c) 2019 Tilen MAJERLE
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge,
 * publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * This file is part of OneWire-UART library.
 *
 * Author: Tilen MAJERLE <tilen@majerle.eu>
 * Version: v2.0.0
 */
#include "ow/ow.h"

#if OW_CFG_OS && !__DOXYGEN__

#include "cmsis_os.h"

uint8_t
ow_sys_mutex_create(OW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
 const osMutexAttr_t attr = {
 .attr_bits = osMutexRecursive
 };

 mutex = osMutexNew(&attr); / Create new mutex */
 OW_UNUSED(arg);
 return 1;
}

uint8_t
ow_sys_mutex_delete(OW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
 OW_UNUSED(arg);
 osMutexDelete(*mutex); /* Delete mutex */
 return 1;
}

uint8_t
ow_sys_mutex_wait(OW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
 if (osMutexAcquire(*mutex, osWaitForever) != osOK) {
 return 0;
 }
 OW_UNUSED(arg);
 return 1;
}

uint8_t
ow_sys_mutex_release(OW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
 if (osMutexRelease(*mutex) != osOK) {
 return 0;
 }
 OW_UNUSED(arg);
 return 1;
}

#endif /* OW_CFG_OS && !__DOXYGEN__ */

Hardware connection with sensor

To be able to successfully use sensors and other devices with embedded systems, these needs to be physically wired with embedded system (or PC).

Target devices (usually sensors or memory devices) are connected to master host device using single wire (from here protocol name One Wire) for communication only. There are also voltage and ground lines, marked as VCC and GND, respectively.

At this point, we assume you are familiar with UART protocol and you understand it has 2 independent lines, one for transmitting data (TX) and second to receive data (RX).

For successful communication with sensors, bi-directional support is necessary to be implemented, but there is only 1 wire available to do so. It might sound complicated at this point.

OneWire data line is by default in open-drain mode. This means that:

	Any device connected to data line can at any time pull line to GND without fear of short circuit

	None of the devices are allowed to force high state on the line. Application must use external pull-up resistor to do so.

How to send data over TX pin if application cannot force high level on the line? There are 2 options:

	Configure UART TX pin to open-drain mode

	Use push-pull to open-drain converter using 2 mosfets and 1 resistor

[image: Push-pull to open-drain converter]Push-pull to open-drain converter

Since many latest embedded systems allow you to configure TX pin to open-drain mode natively, you may consider second option instead.

[image: Embedded system with native open-drain TX pin support]Embedded system with native open-drain TX pin support

Warning

Application must assure that TX pin is always confiured to open-drain mode, either with converted or directly.

TX and RX pins

Every communication starts by master initiating it. To transfer data over UART, application uses TX pin and RX pin is used to read data. With 1-Wire protocol, application needs to transfer data and read them back in real-time. This is also called loop-back mode.

Let’s take reset sequence as an example. By specifications, UART has to be configured in 9600 bauds and master needs to send single UART byte with value of 0xF0. If there is any slave connected, slave must pull line to GND during transmision 0f 0xF part of byte. Master needs to identify this by using RX pin of the UART.

Note

Please check official document on Maxim website [https://www.maximintegrated.com/en/design/technical-documents/tutorials/2/214.html] to understand why 0xF0 and 9600 bauds.

UART and 1-Wire timing relation

This part is explaining how UART and 1-Wire timings are connected together and what is important to take into consideration for stable and reliable communication.

1-Wire protocol specification match UART protocol specification when baudrate is configured at 115200 bauds.
Going into the details about 1-Wire protocol, we can identify that:

	To send 1 logical bit at 1-Wire level, application needs to transmit 1 byte at UART level with speed of 115200 bauds

	To send 1 logical byte at 1-Wire level, application must transmit 8 bytes at UART level with speed of 115200 bauds

[image: UART byte time is equivalent to 1 bit at 1-Wire level]UART byte time is equivalent to 1 bit at 1-Wire level

Timing for each bit is very clearly defined by 1-Wire specification (not purpose to go into these details) and needs to respect all low and high level states for reliable communication. Each bit at 1-Wire level starts with master pulling line low for specific amount of time. Until master initiates communication, line is in idle mode.

Image above shows relation between UART and 1-Wire timing. It represents transmission of 3 bits on 1-Wire level or 3 bytes at UART level. Green and blue rectangles show different times between ending of one bit and start of new bit.

Note

By 1-Wire specification, it is important to match bit timing. It is less important to match idle timings as these are not defined. Effectively this allows master to use UART to initiate byte transfer where UART takes care of proper timing.

Different timings (green vs blue) may happen if application uses many interrupts, but uses UART in polling mode to transmit data. This is very important for operating systems where context switch may disable interrupts. Fortunately, it is not a problem for reliable communication due to:

	When UART starts transmission, hardware takes care of timing

	If application gets preempted with more important task, 1-Wire line will be in idle state for longer time. This is not an issue by 1-Wire specification

More advanced embedded systems implement DMA controllers to support next level of transfers.

API reference

List of all the modules:

	OneWire-UART

	Configuration

	Low-level functions

	System functions

	Device drivers
	DS18x20 temperature sensor

OneWire-UART

	
group OW

	OneWire API.

	Note
	Functions with _raw suffix do no implement locking mechanism when used with operating system.

Defines

	
OW_UNUSED(x)

	Unused variable macro

	
OW_ASSERT(msg, c)

	Assert check function.

	
OW_ASSERT0(msg, c)

	Assert check function with return 0

	
OW_ARRAYSIZE(x)

	Get size of statically declared array.

	Return
	Number of array elements

	Parameters
	
	[in] x: Input array

	
OW_CMD_RSCRATCHPAD

	Read scratchpad command for 1-Wire devices

	
OW_CMD_WSCRATCHPAD

	Write scratchpad command for 1-Wire devices

	
OW_CMD_CPYSCRATCHPAD

	Copy scratchpad command for 1-Wire devices

	
OW_CMD_RECEEPROM

	Read EEPROM command

	
OW_CMD_RPWRSUPPLY

	Read power supply command

	
OW_CMD_SEARCHROM

	Search ROM command

	
OW_CMD_READROM

	Read ROM command

	
OW_CMD_MATCHROM

	Match ROM command. Select device with specific ROM

	
OW_CMD_SKIPROM

	Skip ROM, select all devices

Typedefs

	
typedef owr_t (*ow_search_cb_fn)(ow_t *const ow, const ow_rom_t *const rom_id, size_t index, void *arg)

	Search callback function implementation.

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: Rom address when new device detected. Set to NULL when search finished

	[in] index: Current device index When rom_id = NULL, value indicates number of total devices found

	[in] arg: Custom user argument

Enums

	
enum owr_t

	1-Wire result enumeration

Values:

	
owOK = 0x00

	Device returned OK

	
owERRPRESENCE = -1

	Presence was not successful

	
owERRNODEV = -2

	No device connected, maybe device removed during scan?

	
owPARERR = -3

	Parameter error

	
owERR

	General-Purpose error

Functions

	
owr_t ow_init(ow_t *const ow, const ow_ll_drv_t *const ll_drv, void *arg)

	Initialize OneWire instance.

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[in] ow: OneWire instance

	[in] ll_drv: Low-level driver

	[in] arg: Custom argument

	
void ow_deinit(ow_t *const ow)

	Deinitialize OneWire instance.

	Parameters
	
	[in] ow: OneWire instance

	
owr_t ow_protect(ow_t *const ow, const uint8_t protect)

	Protect 1-wire from concurrent access.

	Note
	Used only for OS systems

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[inout] ow: 1-Wire handle

	[in] protect: Set to 1 to protect core, 0 otherwise

	
owr_t ow_unprotect(ow_t *const ow, const uint8_t protect)

	Unprotect 1-wire from concurrent access.

	Note
	Used only for OS systems

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[inout] ow: 1-Wire handle

	[in] protect: Set to 1 to protect core, 0 otherwise

	
owr_t ow_reset_raw(ow_t *const ow)

	Reset 1-Wire bus and set connected devices to idle state.

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[inout] ow: 1-Wire handle

	
owr_t ow_reset(ow_t *const ow)

	Reset 1-Wire bus and set connected devices to idle state.

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	
uint8_t ow_write_byte_raw(ow_t *const ow, const uint8_t b)

	Write byte over 1-wire protocol.

	Return
	Received byte over 1-wire protocol

	Parameters
	
	[inout] ow: 1-Wire handle

	[in] b: Byte to write

	
uint8_t ow_write_byte(ow_t *const ow, const uint8_t b)

	Write byte over 1-wire protocol.

	Return
	Received byte over 1-wire protocol

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	[in] b: Byte to write

	
uint8_t ow_read_byte_raw(ow_t *const ow)

	Read next byte on 1-Wire.

	Return
	Byte read over 1-Wire

	Parameters
	
	[inout] ow: 1-Wire handle

	
uint8_t ow_read_byte(ow_t *const ow)

	Read next byte on 1-Wire.

	Return
	Byte read over 1-Wire

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	
uint8_t ow_read_bit_raw(ow_t *const ow)

	Read single bit on 1-Wire network.

	Return
	Bit value

	Parameters
	
	[inout] ow: 1-Wire handle

	
uint8_t ow_read_bit(ow_t *const ow)

	Read single bit on 1-Wire network.

	Return
	Bit value

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	
owr_t ow_search_reset_raw(ow_t *const ow)

	Reset search.

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[inout] ow: 1-Wire handle

	
owr_t ow_search_reset(ow_t *const ow)

	Reset search.

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	
owr_t ow_search_raw(ow_t *const ow, ow_rom_t *const rom_id)

	Search for devices on 1-wire bus.

	Note
	To reset search and to start over, use ow_search_reset function

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[inout] ow: 1-Wire handle

	[out] rom_id: Pointer to ROM structure to save ROM

	
owr_t ow_search(ow_t *const ow, ow_rom_t *const rom_id)

	Search for devices on 1-wire bus.

	Note
	To reset search and to start over, use ow_search_reset function

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	[out] rom_id: Pointer to ROM structure to save ROM

	
owr_t ow_search_with_command_raw(ow_t *const ow, const uint8_t cmd, ow_rom_t *const rom_id)

	Search for devices on 1-wire bus with custom search command.

	Note
	To reset search and to start over, use ow_search_reset function

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[inout] ow: 1-Wire handle

	[in] cmd: command to use for search operation

	[out] rom_id: Pointer to ROM structure to store address

	
owr_t ow_search_with_command(ow_t *const ow, const uint8_t cmd, ow_rom_t *const rom_id)

	Search for devices on 1-wire bus with custom search command.

	Note
	To reset search and to start over, use ow_search_reset function

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[inout] ow: 1-Wire handle

	[in] cmd: command to use for search operation

	[out] rom_id: Pointer to ROM structure to store address

	
owr_t ow_search_with_command_callback(ow_t *const ow, const uint8_t cmd, size_t *const roms_found, const ow_search_cb_fn func, void *const arg)

	Search devices on 1-wire network by using callback function and custom search command.

When new device is detected, callback function func is called to notify user
	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] cmd: 1-Wire search command

	[out] roms_found: Output variable to save number of found devices. Set to NULL if not used

	[in] func: Callback function to call for each device

	[in] arg: Custom user argument, used in callback function

	
owr_t ow_search_with_callback(ow_t *const ow, size_t *const roms_found, const ow_search_cb_fn func, void *const arg)

	Search devices on 1-wire network by using callback function and SEARCH_ROM 1-Wire command.

When new device is detected, callback function func is called to notify user
	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[out] roms_found: Output variable to save number of found devices. Set to NULL if not used

	[in] func: Callback function to call for each device

	[in] arg: Custom user argument, used in callback function

	
owr_t ow_search_devices_with_command_raw(ow_t *const ow, const uint8_t cmd, ow_rom_t *const rom_id_arr, const size_t rom_len, size_t *const roms_found)

	Search for devices on 1-Wire network with command and store ROM IDs to input array.

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] cmd: 1-Wire search command

	[in] rom_id_arr: Pointer to output array to store found ROM IDs into

	[in] rom_len: Length of input ROM array

	[out] roms_found: Output variable to save number of found devices. Set to NULL if not used

	
owr_t ow_search_devices_with_command(ow_t *const ow, const uint8_t cmd, ow_rom_t *const rom_id_arr, const size_t rom_len, size_t *const roms_found)

	Search for devices on 1-Wire network with command and store ROM IDs to input array.

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] cmd: 1-Wire search command

	[in] rom_id_arr: Pointer to output array to store found ROM IDs into

	[in] rom_len: Length of input ROM array

	[out] roms_found: Output variable to save number of found devices. Set to NULL if not used

	
owr_t ow_search_devices_raw(ow_t *const ow, ow_rom_t *const rom_id_arr, const size_t rom_len, size_t *const roms_found)

	Search for devices on 1-Wire network with default command and store ROM IDs to input array.

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id_arr: Pointer to output array to store found ROM IDs into

	[in] rom_len: Length of input ROM array

	[out] roms_found: Output variable to save number of found devices. Set to NULL if not used

	
owr_t ow_search_devices(ow_t *const ow, ow_rom_t *const rom_id_arr, const size_t rom_len, size_t *const roms_found)

	Search for devices on 1-Wire network with default command and store ROM IDs to input array.

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id_arr: Pointer to output array to store found ROM IDs into

	[in] rom_len: Length of input ROM array

	[out] roms_found: Output variable to save number of found devices. Set to NULL if not used

	
uint8_t ow_match_rom_raw(ow_t *const ow, const ow_rom_t *const rom_id)

	Select device on 1-wire network with exact ROM number.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to match device

	
uint8_t ow_match_rom(ow_t *const ow, const ow_rom_t *const rom_id)

	Select device on 1-wire network with exact ROM number.

	Return
	1 on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to match device

	
uint8_t ow_skip_rom_raw(ow_t *const ow)

	Skip ROM address and select all devices on the network.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	
uint8_t ow_skip_rom(ow_t *const ow)

	Skip ROM address and select all devices on the network.

	Return
	1 on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	
uint8_t ow_crc(const void *const in, const size_t len)

	Calculate CRC-8 of input data.

	Return
	Calculated CRC

	Note
	This function is reentrant

	Parameters
	
	[in] in: Input data

	[in] len: Number of bytes

	
struct ow_rom_t

	#include <ow.h>ROM structure.

Public Members

	
uint8_t rom[8]

	8-bytes ROM address

	
struct ow_t

	#include <ow.h>1-Wire structure

Public Members

	
ow_rom_t rom

	ROM address of last device found. When searching for new devices, we always need last found address, to be able to decide which way to go next time during scan.

	
uint8_t disrepancy

	Disrepancy value on last search

	
void *arg

	User custom argument

	
const ow_ll_drv_t *ll_drv

	Low-level functions driver

	
OW_CFG_OS_MUTEX_HANDLE mutex

	Mutex handle

Configuration

	
group OW_CONFIG

	Configuration for OneWire library.

Defines

	
OW_CFG_OS

	Enables 1 or disables 0 operating system support in the library.

	Note
	When OW_CFG_OS is enabled, user must implement functions in System functions group.

	
OW_CFG_OS_MUTEX_HANDLE

	Mutex handle type.

	Note
	This value must be set in case OW_CFG_OS is set to 1. If data type is not known to compiler, include header file with definition before you define handle type

Low-level functions

	
group OW_LL

	Low-level device dependant functions.

	
struct ow_ll_drv_t

	#include <ow.h>1-Wire low-level driver structure

Public Members

	
uint8_t (*init)(void *arg)

	Initialize low-level driver

	
uint8_t (*deinit)(void *arg)

	Deinit low-level driver

	
uint8_t (*set_baudrate)(uint32_t baud, void *arg)

	Set uart baudrate

	
uint8_t (*tx_rx)(const uint8_t *tx, uint8_t *rx, size_t len, void *arg)

	

System functions

System function are used in conjunction with thread safety.
Please check Thread safety section for more information

	
group OW_SYS

	System functions when used with operating system.

Functions

	
uint8_t ow_sys_mutex_create(OW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)

	Create a new mutex and assign value to handle.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[out] mutex: Output variable to save mutex handle

	[in] arg: User argument passed on ow_init function

	
uint8_t ow_sys_mutex_delete(OW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)

	Delete existing mutex and invalidate mutex variable.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] mutex: Mutex handle to remove and invalidate

	[in] arg: User argument passed on ow_init function

	
uint8_t ow_sys_mutex_wait(OW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)

	Wait for a mutex until ready (unlimited time)

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] mutex: Mutex handle to wait for

	[in] arg: User argument passed on ow_init function

	
uint8_t ow_sys_mutex_release(OW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)

	Release already locked mutex.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] mutex: Mutex handle to release

	[in] arg: User argument passed on ow_init function

Device drivers

List of all supported device drivers

	DS18x20 temperature sensor

DS18x20 temperature sensor

	
group OW_DEVICE_DS18x20

	Device driver for DS18x20 temperature sensor.

	Note
	Functions with _raw suffix do no implement locking mechanism when using with operating system.

Defines

	
OW_DS18X20_ALARM_DISABLE

	Disable alarm temperature

	
OW_DS18X20_ALARM_NOCHANGE

	Do not modify current alarm settings

	
OW_DS18X20_TEMP_MIN

	Minimum temperature

	
OW_DS18X20_TEMP_MAX

	Maximal temperature

Functions

	
uint8_t ow_ds18x20_start_raw(ow_t *const ow, const ow_rom_t *const rom_id)

	Start temperature conversion on specific (or all) devices.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to start measurement for. Set to NULL to start measurement on all devices at the same time

	
uint8_t ow_ds18x20_start(ow_t *const ow, const ow_rom_t *const rom_id)

	Start temperature conversion on specific (or all) devices.

	Return
	1 on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to start measurement for. Set to NULL to start measurement on all devices at the same time

	
uint8_t ow_ds18x20_read_raw(ow_t *const ow, const ow_rom_t *const rom_id, float *const t)

	Read temperature previously started with ow_ds18x20_start.

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to read data from

	[out] t: Pointer to output float variable to save temperature

	
uint8_t ow_ds18x20_read(ow_t *const ow, const ow_rom_t *const rom_id, float *const t)

	Read temperature previously started with ow_ds18x20_start.

	Return
	1 on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to read data from

	[out] t: Pointer to output float variable to save temperature

	
uint8_t ow_ds18x20_set_resolution_raw(ow_t *const ow, const ow_rom_t *const rom_id, const uint8_t bits)

	Set resolution for DS18B20 sensor.

	Note
	DS18S20 has fixed 9-bit resolution

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to set resolution

	[in] bits: Number of resolution bits. Possible values are 9 - 12

	
uint8_t ow_ds18x20_set_resolution(ow_t *const ow, const ow_rom_t *const rom_id, const uint8_t bits)

	Set resolution for DS18B20 sensor.

	Note
	DS18S20 has fixed 9-bit resolution

	Return
	1 on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to set resolution

	[in] bits: Number of resolution bits. Possible values are 9 - 12

	
uint8_t ow_ds18x20_get_resolution_raw(ow_t *const ow, const ow_rom_t *const rom_id)

	Get resolution for DS18B20 device.

	Return
	Resolution in units of bits (9 - 12) on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to get resolution from

	
uint8_t ow_ds18x20_get_resolution(ow_t *const ow, const ow_rom_t *const rom_id)

	Get resolution for DS18B20 device.

	Return
	Resolution in units of bits (9 - 12) on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to get resolution from

	
uint8_t ow_ds18x20_set_alarm_temp_raw(ow_t *const ow, const ow_rom_t *const rom_id, int8_t temp_l, int8_t temp_h)

	Set/clear temperature alarm high/low levels in units of degree Celcius.

Example usage would look something similar to:

//Set alarm temperature; low = 10°C, high = 30°C
ow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);
//Set alarm temperature; low = disable, high = no change
ow_ds18x20_set_alarm_temp(&ow, dev_id, OW_DS18X20_ALARM_DISABLE, OW_DS18X20_ALARM_NOCHANGE);
//Set alarm temperature; low = no change, high = disable
ow_ds18x20_set_alarm_temp(&ow, dev_id, OW_DS18X20_ALARM_NOCHANGE, OW_DS18X20_ALARM_DISABLE);
//Set alarm temperature; low = 10°C, high = 30°C
ow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);

	Note
	temp_h and temp_l are high and low temperature alarms and can accept different values:
	-55 % 125, valid temperature range

	OW_DS18X20_ALARM_DISABLE to disable temperature alarm (either high or low)

	OW_DS18X20_ALARM_NOCHANGE to keep current alarm temperature (either high or low)

	Return
	1 on success, 0 otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address

	[in] temp_l: Alarm low temperature

	[in] temp_h: Alarm high temperature

	
uint8_t ow_ds18x20_set_alarm_temp(ow_t *const ow, const ow_rom_t *const rom_id, int8_t temp_l, int8_t temp_h)

	Set/clear temperature alarm high/low levels in units of degree Celcius.

Example usage would look something similar to:

//Set alarm temperature; low = 10°C, high = 30°C
ow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);
//Set alarm temperature; low = disable, high = no change
ow_ds18x20_set_alarm_temp(&ow, dev_id, OW_DS18X20_ALARM_DISABLE, OW_DS18X20_ALARM_NOCHANGE);
//Set alarm temperature; low = no change, high = disable
ow_ds18x20_set_alarm_temp(&ow, dev_id, OW_DS18X20_ALARM_NOCHANGE, OW_DS18X20_ALARM_DISABLE);
//Set alarm temperature; low = 10°C, high = 30°C
ow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);

	Note
	temp_h and temp_l are high and low temperature alarms and can accept different values:
	-55 % 125, valid temperature range

	OW_DS18X20_ALARM_DISABLE to disable temperature alarm (either high or low)

	OW_DS18X20_ALARM_NOCHANGE to keep current alarm temperature (either high or low)

	Return
	1 on success, 0 otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address

	[in] temp_l: Alarm low temperature

	[in] temp_h: Alarm high temperature

	
owr_t ow_ds18x20_search_alarm_raw(ow_t *const ow, ow_rom_t *const rom_id)

	Search for DS18x20 devices with alarm flag.

	Note
	To reset search, use ow_search_reset function

	Return
	owOK on success, member of owr_t otherwise

	Parameters
	
	[in] ow: 1-Wire handle

	[out] rom_id: Pointer to 8-byte long variable to save ROM

	
owr_t ow_ds18x20_search_alarm(ow_t *const ow, ow_rom_t *const rom_id)

	Search for DS18x20 devices with alarm flag.

	Note
	To reset search, use ow_search_reset function

	Return
	owOK on success, member of owr_t otherwise

	Note
	This function is thread-safe

	Parameters
	
	[in] ow: 1-Wire handle

	[out] rom_id: Pointer to 8-byte long variable to save ROM

	
uint8_t ow_ds18x20_is_b(ow_t *const ow, const ow_rom_t *const rom_id)

	Check if ROM address matches DS18B20 device.

	Return
	1 on success, 0 otherwise

	Note
	This function is reentrant

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to test against DS18B20

	
uint8_t ow_ds18x20_is_s(ow_t *const ow, const ow_rom_t *const rom_id)

	Check if ROM address matches DS18S20 device.

	Return
	1 on success, 0 otherwise

	Note
	This function is reentrant

	Parameters
	
	[in] ow: 1-Wire handle

	[in] rom_id: 1-Wire device address to test against DS18S20

Examples and demos

Various examples are provided for fast library evaluation on embedded systems. These are optimized prepared and maintained for 2 platforms, but could be easily extended to more platforms:

	WIN32 examples, prepared as Visual Studio Community [https://visualstudio.microsoft.com/vs/community/] projects

	ARM Cortex-M examples for STM32, prepared as STM32CubeIDE [https://www.st.com/en/development-tools/stm32cubeide.html] GCC project

Warning

Library is platform independent and can be used on any platform.

Supported architectures

There are many platforms available today on a market, however supporting them all would be tough task for single person.
Therefore it has been decided to support (for purpose of examples) 2 platforms only, WIN32 and STM32.

WIN32

Examples for WIN32 are prepared as Visual Studio Community [https://visualstudio.microsoft.com/vs/community/] projects.
You can directly open project in the IDE, compile & debug.

STM32

Embedded market is supported by many vendors and STMicroelectronics is, with their STM32 [https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html] series of microcontrollers, one of the most important players.
There are numerous amount of examples and topics related to this architecture.

Examples for STM32 are natively supported with STM32CubeIDE [https://www.st.com/en/development-tools/stm32cubeide.html], an official development IDE from STMicroelectronics.

You can run examples on one of official development boards, available in repository examples.

Examples list

Here is a list of all examples coming with this library.

Tip

Examples are located in /examples/ folder in downloaded package.
Check Download library section to get your package.

OW bare-metal

Simple example, not using operating system, showing basic configuration of the library.
It can be also called bare-metal implementation for simple applications

OW OS

OW library as an example when multiple threads want to access to single OW core.

Index

 A
 | D
 | I
 | L
 | M
 | O
 | R
 | S
 | T

A

 	
 	arg (C++ member)

D

 	
 	deinit (C++ member)

 	
 	disrepancy (C++ member)

I

 	
 	init (C++ member)

L

 	
 	ll_drv (C++ member)

M

 	
 	mutex (C++ member)

O

 	
 	OW::owERR (C++ enumerator)

 	OW::owERRNODEV (C++ enumerator)

 	OW::owERRPRESENCE (C++ enumerator)

 	OW::owOK (C++ enumerator)

 	OW::owPARERR (C++ enumerator)

 	OW::owr_t (C++ enum)

 	OW_ARRAYSIZE (C macro)

 	OW_ASSERT (C macro)

 	OW_ASSERT0 (C macro)

 	OW_CFG_OS (C macro)

 	OW_CFG_OS_MUTEX_HANDLE (C macro)

 	OW_CMD_CPYSCRATCHPAD (C macro)

 	OW_CMD_MATCHROM (C macro)

 	OW_CMD_READROM (C macro)

 	OW_CMD_RECEEPROM (C macro)

 	OW_CMD_RPWRSUPPLY (C macro)

 	OW_CMD_RSCRATCHPAD (C macro)

 	OW_CMD_SEARCHROM (C macro)

 	OW_CMD_SKIPROM (C macro)

 	OW_CMD_WSCRATCHPAD (C macro)

 	ow_crc (C++ function)

 	ow_deinit (C++ function)

 	OW_DS18X20_ALARM_DISABLE (C macro)

 	OW_DS18X20_ALARM_NOCHANGE (C macro)

 	ow_ds18x20_get_resolution (C++ function)

 	ow_ds18x20_get_resolution_raw (C++ function)

 	ow_ds18x20_is_b (C++ function)

 	ow_ds18x20_is_s (C++ function)

 	ow_ds18x20_read (C++ function)

 	ow_ds18x20_read_raw (C++ function)

 	ow_ds18x20_search_alarm (C++ function)

 	ow_ds18x20_search_alarm_raw (C++ function)

 	ow_ds18x20_set_alarm_temp (C++ function)

 	ow_ds18x20_set_alarm_temp_raw (C++ function)

 	ow_ds18x20_set_resolution (C++ function)

 	ow_ds18x20_set_resolution_raw (C++ function)

 	ow_ds18x20_start (C++ function)

 	ow_ds18x20_start_raw (C++ function)

 	
 	OW_DS18X20_TEMP_MAX (C macro)

 	OW_DS18X20_TEMP_MIN (C macro)

 	ow_init (C++ function)

 	ow_ll_drv_t (C++ class)

 	ow_match_rom (C++ function)

 	ow_match_rom_raw (C++ function)

 	ow_protect (C++ function)

 	ow_read_bit (C++ function)

 	ow_read_bit_raw (C++ function)

 	ow_read_byte (C++ function)

 	ow_read_byte_raw (C++ function)

 	ow_reset (C++ function)

 	ow_reset_raw (C++ function)

 	ow_rom_t (C++ class)

 	ow_search (C++ function)

 	ow_search_cb_fn (C++ type)

 	ow_search_devices (C++ function)

 	ow_search_devices_raw (C++ function)

 	ow_search_devices_with_command (C++ function)

 	ow_search_devices_with_command_raw (C++ function)

 	ow_search_raw (C++ function)

 	ow_search_reset (C++ function)

 	ow_search_reset_raw (C++ function)

 	ow_search_with_callback (C++ function)

 	ow_search_with_command (C++ function)

 	ow_search_with_command_callback (C++ function)

 	ow_search_with_command_raw (C++ function)

 	ow_skip_rom (C++ function)

 	ow_skip_rom_raw (C++ function)

 	ow_sys_mutex_create (C++ function)

 	ow_sys_mutex_delete (C++ function)

 	ow_sys_mutex_release (C++ function)

 	ow_sys_mutex_wait (C++ function)

 	ow_t (C++ class)

 	ow_unprotect (C++ function)

 	OW_UNUSED (C macro)

 	ow_write_byte (C++ function)

 	ow_write_byte_raw (C++ function)

R

 	
 	rom (C++ member), [1]

S

 	
 	set_baudrate (C++ member)

T

 	
 	tx_rx (C++ member)

 _static/plus.png

_static/images/logo_tm.png

_static/images/logo_tm_full.png
majerle.eu

Knowledge sharing is caring

_static/file.png

_static/logo_tm.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 OneWire-UART documentation!

 		
 Get started

 		
 Download library

 		
 Download from releases

 		
 Clone from Github

 		
 Add library to project

 		
 Configuration file

 		
 User manual

 		
 How it works

 		
 Thread safety

 		
 Hardware connection with sensor

 		
 TX and RX pins

 		
 UART and 1-Wire timing relation

 		
 API reference

 		
 OneWire-UART

 		
 Configuration

 		
 Low-level functions

 		
 System functions

 		
 Device drivers

 		
 DS18x20 temperature sensor

 		
 Examples and demos

 		
 Supported architectures

 		
 WIN32

 		
 STM32

 		
 Examples list

 		
 OW bare-metal

 		
 OW OS

