
LwOW

Tilen MAJERLE

Jul 05, 2020

CONTENTS

1 Features 3

2 Requirements 5

3 Contribute 7

4 License 9

5 Table of contents 11
5.1 Getting started . 11
5.2 User manual . 13
5.3 API reference . 29
5.4 Examples and demos . 46

Index 49

i

ii

LwOW

Welcome to the documentation for version 3.0.0.

LwOW is lightweight, platform independent library for Onewire protocol for embedded systems. Its primary focus is
UART hardware for physical communication for sensors and other slaves.

Download library · Getting started · Open Github

CONTENTS 1

https://github.com/MaJerle/lwow

LwOW

2 CONTENTS

CHAPTER

ONE

FEATURES

• Written in ANSI C99

• Platform independent, uses custom low-level layer for device drivers

• 1-Wire protocol fits UART specifications at 9600 and 115200 bauds

• Hardware is responsible for timing characteristics

– Allows DMA on the high-performance microcontrollers

• Different device drivers included

– DS18x20 temperature sensor is natively supported

• Works with operating system due to hardware timing management

– Separate thread-safe API is available

• API for device scan, reading and writing single bits

• User friendly MIT license

3

LwOW

4 Chapter 1. Features

CHAPTER

TWO

REQUIREMENTS

• C compiler

• Platform dependent drivers

• Few kB of non-volatile memory

5

LwOW

6 Chapter 2. Requirements

CHAPTER

THREE

CONTRIBUTE

Fresh contributions are always welcome. Simple instructions to proceed:

1. Fork Github repository

2. Respect C style & coding rules used by the library

3. Create a pull request to develop branch with new features or bug fixes

Alternatively you may:

1. Report a bug

2. Ask for a feature request

7

https://github.com/MaJerle/c-code-style

LwOW

8 Chapter 3. Contribute

CHAPTER

FOUR

LICENSE

MIT License

Copyright (c) 2020 Tilen MAJERLE

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

9

LwOW

10 Chapter 4. License

CHAPTER

FIVE

TABLE OF CONTENTS

5.1 Getting started

5.1.1 Download library

Library is primarly hosted on Github.

• Download latest release from releases area on Github

• Clone develop branch for latest development

Download from releases

All releases are available on Github releases area.

Clone from Github

First-time clone

• Download and install git if not already

• Open console and navigate to path in the system to clone repository to. Use command cd your_path

• Clone repository with one of available 3 options

– Run git clone --recurse-submodules https://github.com/MaJerle/lwow com-
mand to clone entire repository, including submodules

– Run git clone --recurse-submodules --branch develop https://github.com/
MaJerle/lwow to clone development branch, including submodules

– Run git clone --recurse-submodules --branch master https://github.com/
MaJerle/lwow to clone latest stable branch, including submodules

• Navigate to examples directory and run favourite example

11

https://github.com/MaJerle/lwow
https://github.com/MaJerle/lwow/releases
https://github.com/MaJerle/lwow/releases

LwOW

Update cloned to latest version

• Open console and navigate to path in the system where your resources repository is. Use command cd
your_path

• Run git pull origin master --recurse-submodules command to pull latest changes and to
fetch latest changes from submodules

• Run git submodule foreach git pull origin master to update & merge all submodules

Note: This is preferred option to use when you want to evaluate library and run prepared examples. Repository
consists of multiple submodules which can be automatically downloaded when cloning and pulling changes from root
repository.

5.1.2 Add library to project

At this point it is assumed that you have successfully download library, either cloned it or from releases page.

• Copy lwow folder to your project

• Add lwow/src/include folder to include path of your toolchain

• Add source files from lwow/src/ folder to toolchain build

• Copy lwow/src/include/lwow/lwow_opts_template.h to project folder and rename it to
lwow_opts.h

• Implement device drivers for UART hardware

• Build the project

5.1.3 Configuration file

Library comes with template config file, which can be modified according to needs. This file shall be named
lwow_opts.h and its default template looks like the one below:

Tip: Check LwOW configuration section for possible configuration settings

Listing 1: Config template file

1 /**
2 * \file lwow_opts_template.h
3 * \brief LwOW application configuration
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,

(continues on next page)

12 Chapter 5. Table of contents

LwOW

(continued from previous page)

15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */
34 #ifndef LWOW_HDR_OPTS_H
35 #define LWOW_HDR_OPTS_H
36

37 /* Rename this file to "lwow_opts.h" for your application */
38

39 /*
40 * Open "include/lwow/lwow_opt.h" and
41 * copy & replace here settings you want to change values
42 */
43

44 #endif /* LWOW_HDR_OPTS_H */

5.2 User manual

5.2.1 How it works

LwOW library tends to use UART hardware of any microcontroller/embedded system, to generate timing clock for
OneWire signals.

Nowaways embedded systems allow many UART ports, usually many more vs requirements for the final application.
OneWire protocol needs precise timings and embedded systems (in 99.9%) do not have specific hardware to handle
communication of this type.

Fortunately, OneWire timings match with UART timings at 9600 and 115200 bauds.

Note: Check detailed tutorial from Maxim for more information.

5.2. User manual 13

https://www.maximintegrated.com/en/design/technical-documents/tutorials/2/214.html

LwOW

5.2.2 Thread safety

With default configuration, library is not thread safe. This means whenever it is used with operating system, user must
resolve it with care.

Library has locking mechanism support for thread safety, which needs to be enabled.

Tip: To enable thread-safety support, parameter LWOW_CFG_OS must be set to 1. Please check LwOW configuration
for more information about other options.

After thread-safety features has been enabled, it is necessary to implement 4 low-level system functions.

Tip: System function template example is available in lwow/src/system/ folder.

Example code for CMSIS-OS V2

Note: Check System functions section for function description

Listing 2: System functions for CMSIS-OS based operating system

1 /**
2 * \file lwow_sys_cmsis_os.c
3 * \brief System functions for CMSIS-OS based operating system
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */

(continues on next page)

14 Chapter 5. Table of contents

LwOW

(continued from previous page)

34 #include "lwow/lwow.h"
35

36 #if LWOW_CFG_OS && !__DOXYGEN__
37

38 #include "cmsis_os.h"
39

40 uint8_t
41 lwow_sys_mutex_create(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
42 const osMutexAttr_t attr = {
43 .attr_bits = osMutexRecursive
44 };
45

46 *mutex = osMutexNew(&attr); /* Create new mutex */
47 LWOW_UNUSED(arg);
48 return 1;
49 }
50

51 uint8_t
52 lwow_sys_mutex_delete(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
53 LWOW_UNUSED(arg);
54 osMutexDelete(*mutex); /* Delete mutex */
55 return 1;
56 }
57

58 uint8_t
59 lwow_sys_mutex_wait(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
60 if (osMutexAcquire(*mutex, osWaitForever) != osOK) {
61 return 0;
62 }
63 LWOW_UNUSED(arg);
64 return 1;
65 }
66

67 uint8_t
68 lwow_sys_mutex_release(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
69 if (osMutexRelease(*mutex) != osOK) {
70 return 0;
71 }
72 LWOW_UNUSED(arg);
73 return 1;
74 }
75

76 #endif /* LWOW_CFG_OS && !__DOXYGEN__ */

5.2.3 Hardware connection with sensor

To be able to successfully use sensors and other devices with embedded systems, these needs to be physically wired
with embedded system (or PC).

Target devices (usually sensors or memory devices) are connected to master host device using single wire (from here
protocol name One Wire) for communication only. There are also voltage and ground lines, marked as VCC and GND,
respectively.

At this point, we assume you are familiar with UART protocol and you understand it has 2 independent lines, one for
transmitting data (TX) and second to receive data (RX).

5.2. User manual 15

LwOW

For successful communication with sensors, bi-directional support is necessary to be implemented, but there is only 1
wire available to do so. It might sound complicated at this point.

OneWire data line is by default in open-drain mode. This means that:

• Any device connected to data line can at any time pull line to GND without fear of short circuit

• None of the devices are allowed to force high state on the line. Application must use external pull-up resistor to
do so.

How to send data over TX pin if application cannot force high level on the line? There are 2 options:

• Configure UART TX pin to open-drain mode

• Use push-pull to open-drain converter using 2 mosfets and 1 resistor

Fig. 1: Push-pull to open-drain converter

Since many latest embedded systems allow you to configure TX pin to open-drain mode natively, you may consider
second option instead.

Fig. 2: Embedded system with native open-drain TX pin support

Warning: Application must assure that TX pin is always configured to open-drain mode, either with push-pull to
open-drain converter or directly configured in the system.

TX and RX pins

Every communication starts by master initiating it. To transfer data over UART, application uses TX pin and RX pin
is used to read data. With 1-Wire protocol, application needs to transfer data and read them back in real-time. This is
also called loop-back mode.

Let’s take reset sequence as an example. By specifications, UART has to be configured in 9600 bauds and master
needs to send single UART byte with value of 0xF0. If there is any slave connected, slave must pull line to GND
during transmision 0f 0xF part of byte. Master needs to identify this by using RX pin of the UART.

Note: Please check official document on Maxim website to understand why 0xF0 and 9600 bauds.

5.2.4 UART and 1-Wire timing relation

This part is explaining how UART and 1-Wire timings are connected together and what is important to take into
consideration for stable and reliable communication.

1-Wire protocol specification match UART protocol specification when baudrate is configured at 115200 bauds.
Going into the details about 1-Wire protocol, we can identify that:

• To send 1 logical bit at 1-Wire level, application needs to transmit 1 byte at UART level with speed of 115200
bauds

• To send 1 logical byte at 1-Wire level, application must transmit 8 bytes at UART level with speed of 115200
bauds

16 Chapter 5. Table of contents

https://www.maximintegrated.com/en/design/technical-documents/tutorials/2/214.html

LwOW

Fig. 3: UART byte time is equivalent to 1 bit at 1-Wire level

Timing for each bit is very clearly defined by 1-Wire specification (not purpose to go into these details) and needs to
respect all low and high level states for reliable communication. Each bit at 1-Wire level starts with master pulling
line low for specific amount of time. Until master initiates communication, line is in idle mode.

Image above shows relation between UART and 1-Wire timing. It represents transmission of 3 bits on 1-Wire level or
3 bytes at UART level. Green and blue rectangles show different times between ending of one bit and start of new bit.

Note: By 1-Wire specification, it is important to match bit timing. It is less important to match idle timings as these
are not defined. Effectively this allows master to use UART to initiate byte transfer where UART takes care of proper
timing.

Different timings (green vs blue) may happen if application uses many interrupts, but uses UART in polling mode to
transmit data. This is very important for operating systems where context switch may disable interrupts. Fortunately,
it is not a problem for reliable communication due to:

• When UART starts transmission, hardware takes care of timing

• If application gets preempted with more important task, 1-Wire line will be in idle state for longer time. This is
not an issue by 1-Wire specification

More advanced embedded systems implement DMA controllers to support next level of transfers.

5.2.5 Porting guide

Implement low-level driver

Implementation of low-level driver is an essential part. It links middleware with actual hardware design of the device.

Its implementation must provide 4 functions:

• To open/configure UART hardware

• To set UART baudrate on the fly

• To transmit/receive data over UART

• To close/de-init UART hardware

After these functions have been implemented (check below for references), driver must link these functions to single
driver structure of type lwow_ll_drv_t, later used during instance initialization.

Tip: Check Low-level driver for function prototypes.

5.2. User manual 17

LwOW

Implement system functions

System functions are required only if operating system mode is enabled, with LWOW_CFG_OS.

Its implementation structure is not the same as for low-level driver, customer needs to implement fixed functions, with
pre-defined name, starting with ow_sys_ name.

System function must only support OS mutex management and has to provide:

• ow_sys_mutex_create() function to create new mutex

• ow_sys_mutex_delete() function to delete existing mutex

• ow_sys_mutex_wait() function to wait for mutex to be available

• ow_sys_mutex_release() function to release (give) mutex back

Warning: Application must define LWOW_CFG_OS_MUTEX_HANDLE for mutex type. This shall be done in
lwow_opts.h file.

Tip: Check System functions for function prototypes.

Example: Low-level driver for WIN32

Example code for low-level porting on WIN32 platform. It uses native Windows features to open COM port and
read/write from/to it.

Listing 3: Actual implementation of low-level driver for WIN32

1 /**
2 * \file lwow_ll_win32.c
3 * \brief UART implementation for WIN32
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

(continues on next page)

18 Chapter 5. Table of contents

LwOW

(continued from previous page)

27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */
34 #include <stdio.h>
35 #include "lwow/lwow.h"
36 #include "windows.h"
37

38 #if !__DOXYGEN__
39

40 /* Function prototypes */
41 static uint8_t init(void* arg);
42 static uint8_t deinit(void* arg);
43 static uint8_t set_baudrate(uint32_t baud, void* arg);
44 static uint8_t transmit_receive(const uint8_t* tx, uint8_t* rx, size_t len, void*

→˓arg);
45

46 /* Win 32 LL driver for OW */
47 const lwow_ll_drv_t
48 lwow_ll_drv_win32 = {
49 .init = init,
50 .deinit = deinit,
51 .set_baudrate = set_baudrate,
52 .tx_rx = transmit_receive,
53 };
54

55 static HANDLE com_port;
56 static DCB dcb = { 0 };
57

58 static uint8_t
59 init(void* arg) {
60 dcb.DCBlength = sizeof(dcb);
61

62 /* Open virtual file as read/write */
63 com_port = CreateFile(L"\\\\.\\COM4",
64 GENERIC_READ | GENERIC_WRITE,
65 0,
66 0,
67 OPEN_EXISTING,
68 0,
69 NULL
70);
71

72 /* First read current values */
73 if (GetCommState(com_port, &dcb)) {
74 COMMTIMEOUTS timeouts;
75

76 dcb.BaudRate = 115200;
77 dcb.ByteSize = 8;
78 dcb.Parity = NOPARITY;
79 dcb.StopBits = ONESTOPBIT;
80

81 /* Try to set com port data */
82 if (!SetCommState(com_port, &dcb)) {

(continues on next page)

5.2. User manual 19

LwOW

(continued from previous page)

83 printf("Cannot get COM port\r\n");
84 return 0;
85 }
86

87 if (GetCommTimeouts(com_port, &timeouts)) {
88 /* Set timeout to return immediatelly from ReadFile function */
89 timeouts.ReadIntervalTimeout = MAXDWORD;
90 timeouts.ReadTotalTimeoutConstant = 0;
91 timeouts.ReadTotalTimeoutMultiplier = 0;
92 if (!SetCommTimeouts(com_port, &timeouts)) {
93 printf("Cannot set COM PORT timeouts\r\n");
94 }
95 GetCommTimeouts(com_port, &timeouts);
96 }
97 } else {
98 printf("Cannot get COM port info\r\n");
99 }

100

101 return 1;
102 }
103

104 uint8_t
105 deinit(void* arg) {
106 /* Disable UART peripheral */
107

108 return 1;
109 }
110

111 uint8_t
112 set_baudrate(uint32_t baud, void* arg) {
113 /* Configure UART to selected baudrate */
114 dcb.BaudRate = baud;
115

116 /* Try to set com port data */
117 if (!SetCommState(com_port, &dcb)) {
118 printf("Cannot set COM port baudrate to %u bauds\r\n", (unsigned)baud);
119 return 0;
120 }
121

122 return 1;
123 }
124

125 uint8_t
126 transmit_receive(const uint8_t* tx, uint8_t* rx, size_t len, void* arg) {
127 /* Perform data exchange */
128 size_t read = 0;
129 DWORD br;
130

131 if (com_port != NULL) {
132 /*
133 * Flush any data in RX buffer.
134 * This helps to reset communication in case of on-the-fly device management
135 * if one-or-more device(s) are added or removed.
136 *
137 * Any noise on UART level could start byte and put it to Win buffer,
138 * preventing to read aligned data from it
139 */

(continues on next page)

20 Chapter 5. Table of contents

LwOW

(continued from previous page)

140 PurgeComm(com_port, PURGE_RXCLEAR | PURGE_RXABORT);
141

142 /* Write file and send data */
143 WriteFile(com_port, tx, len, &br, NULL);
144 FlushFileBuffers(com_port);
145

146 /* Read same amount of data as sent previously (loopback) */
147 do {
148 if (ReadFile(com_port, rx, (DWORD)(len - read), &br, NULL)) {
149 read += (size_t)br;
150 rx += (size_t)br;
151 }
152 } while (read < len);
153 }
154

155 return 1;
156 }
157

158 #endif /* !__DOXYGEN__ */

Example: Low-level driver for STM32

Example code for low-level porting on STM32 platform.

Listing 4: Actual implementation of low-level driver for STM32

1 /**
2 * \file lwow_ll_stm32.c
3 * \brief Generic UART implementation for STM32 MCUs
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.

(continues on next page)

5.2. User manual 21

LwOW

(continued from previous page)

30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */
34

35 /*
36 * How it works
37 *
38 * https://docs.majerle.eu/projects/lwow/en/latest/user-manual/hw_connection.html#
39 */
40 #include "lwow/lwow.h"
41

42 #if !__DOXYGEN__
43

44 static uint8_t init(void* arg);
45 static uint8_t deinit(void* arg);
46 static uint8_t set_baudrate(uint32_t baud, void* arg);
47 static uint8_t transmit_receive(const uint8_t* tx, uint8_t* rx, size_t len, void*

→˓arg);
48

49 /* STM32 LL driver for OW */
50 const lwow_ll_drv_t
51 lwow_ll_drv_stm32 = {
52 .init = init,
53 .deinit = deinit,
54 .set_baudrate = set_baudrate,
55 .tx_rx = transmit_receive,
56 };
57

58 static LL_USART_InitTypeDef
59 usart_init;
60

61 static uint8_t
62 init(void* arg) {
63 LL_GPIO_InitTypeDef gpio_init;
64

65 /* Peripheral clock enable */
66 ONEWIRE_USART_CLK_EN;
67 ONEWIRE_TX_PORT_CLK_EN;
68 ONEWIRE_RX_PORT_CLK_EN;
69

70 /* Configure GPIO pins */
71 LL_GPIO_StructInit(&gpio_init);
72 gpio_init.Mode = LL_GPIO_MODE_ALTERNATE;
73 gpio_init.Speed = LL_GPIO_SPEED_FREQ_HIGH;
74 gpio_init.OutputType = LL_GPIO_OUTPUT_OPENDRAIN;
75 gpio_init.Pull = LL_GPIO_PULL_UP;
76

77 /* TX pin */
78 gpio_init.Alternate = ONEWIRE_TX_PIN_AF;
79 gpio_init.Pin = ONEWIRE_TX_PIN;
80 LL_GPIO_Init(ONEWIRE_TX_PORT, &gpio_init);
81

82 /* RX pin */
83 gpio_init.Alternate = ONEWIRE_RX_PIN_AF;
84 gpio_init.Pin = ONEWIRE_RX_PIN;
85 LL_GPIO_Init(ONEWIRE_RX_PORT, &gpio_init);

(continues on next page)

22 Chapter 5. Table of contents

LwOW

(continued from previous page)

86

87 /* Configure UART peripherals */
88 LL_USART_DeInit(ONEWIRE_USART);
89 LL_USART_StructInit(&usart_init);
90 usart_init.BaudRate = 9600;
91 usart_init.DataWidth = LL_USART_DATAWIDTH_8B;
92 usart_init.StopBits = LL_USART_STOPBITS_1;
93 usart_init.Parity = LL_USART_PARITY_NONE;
94 usart_init.TransferDirection = LL_USART_DIRECTION_TX_RX;
95 usart_init.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
96 usart_init.OverSampling = LL_USART_OVERSAMPLING_16;
97 LL_USART_Init(ONEWIRE_USART, &usart_init);
98 LL_USART_ConfigAsyncMode(ONEWIRE_USART);
99

100 LWOW_UNUSED(arg);
101

102 return 1;
103 }
104

105 static uint8_t
106 deinit(void* arg) {
107 LL_USART_DeInit(ONEWIRE_USART);
108 LWOW_UNUSED(arg);
109 return 1;
110 }
111

112 static uint8_t
113 set_baudrate(uint32_t baud, void* arg) {
114 usart_init.BaudRate = baud;
115 LL_USART_Init(ONEWIRE_USART, &usart_init);
116 LL_USART_ConfigAsyncMode(ONEWIRE_USART);
117 LWOW_UNUSED(arg);
118

119 return 1;
120 }
121

122 static uint8_t
123 transmit_receive(const uint8_t* tx, uint8_t* rx, size_t len, void* arg) {
124 const uint8_t* t = tx;
125 uint8_t* r = rx;
126

127 /* Send byte with polling */
128 LL_USART_Enable(ONEWIRE_USART);
129 for (; len > 0; --len, ++t, ++r) {
130 LL_USART_TransmitData8(ONEWIRE_USART, *t);
131 while (!LL_USART_IsActiveFlag_TXE(ONEWIRE_USART));
132 while (!LL_USART_IsActiveFlag_RXNE(ONEWIRE_USART));
133 *r = LL_USART_ReceiveData8(ONEWIRE_USART);
134 }
135 while (!LL_USART_IsActiveFlag_TC(ONEWIRE_USART)) {}
136 LL_USART_Disable(ONEWIRE_USART);
137 LWOW_UNUSED(arg);
138 return 1;
139 }
140

141 #endif /* !__DOXYGEN__ */

5.2. User manual 23

LwOW

Example: System functions for WIN32

Listing 5: Actual implementation of system functions for WIN32

1 /**
2 * \file lwow_sys_win32.c
3 * \brief System functions for WIN32
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */
34 #include "lwow/lwow.h"
35 #include "windows.h"
36

37 #if LWOW_CFG_OS && !__DOXYGEN__
38

39 uint8_t
40 lwow_sys_mutex_create(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
41 *mutex = CreateMutex(NULL, 0, NULL);
42 return 1;
43 }
44

45 uint8_t
46 lwow_sys_mutex_delete(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
47 CloseHandle(*mutex);
48 *mutex = NULL;
49 return 1;
50 }
51

52 uint8_t
53 lwow_sys_mutex_wait(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {

(continues on next page)

24 Chapter 5. Table of contents

LwOW

(continued from previous page)

54 return WaitForSingleObject(*mutex, INFINITE) == WAIT_OBJECT_0;
55 }
56

57 uint8_t
58 lwow_sys_mutex_release(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
59 return ReleaseMutex(*mutex);
60 }
61

62 #endif /* LWOW_CFG_OS && !__DOXYGEN__ */

Example: System functions for CMSIS-OS

Listing 6: Actual implementation of system functions for CMSIS-OS

1 /**
2 * \file lwow_sys_cmsis_os.c
3 * \brief System functions for CMSIS-OS based operating system
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */
34 #include "lwow/lwow.h"
35

36 #if LWOW_CFG_OS && !__DOXYGEN__
37

38 #include "cmsis_os.h"
39

40 uint8_t
41 lwow_sys_mutex_create(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {

(continues on next page)

5.2. User manual 25

LwOW

(continued from previous page)

42 const osMutexAttr_t attr = {
43 .attr_bits = osMutexRecursive
44 };
45

46 *mutex = osMutexNew(&attr); /* Create new mutex */
47 LWOW_UNUSED(arg);
48 return 1;
49 }
50

51 uint8_t
52 lwow_sys_mutex_delete(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
53 LWOW_UNUSED(arg);
54 osMutexDelete(*mutex); /* Delete mutex */
55 return 1;
56 }
57

58 uint8_t
59 lwow_sys_mutex_wait(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
60 if (osMutexAcquire(*mutex, osWaitForever) != osOK) {
61 return 0;
62 }
63 LWOW_UNUSED(arg);
64 return 1;
65 }
66

67 uint8_t
68 lwow_sys_mutex_release(LWOW_CFG_OS_MUTEX_HANDLE* mutex, void* arg) {
69 if (osMutexRelease(*mutex) != osOK) {
70 return 0;
71 }
72 LWOW_UNUSED(arg);
73 return 1;
74 }
75

76 #endif /* LWOW_CFG_OS && !__DOXYGEN__ */

Low-Level driver for STM32 with STM32CubeMX

Specific low-level driver has been implemented for STM32 series of microcontrollers, to allow easy and simple link
of LwOW library with projects generated with STM32CubeMX or STm32CubeIDE development tools.

Driver is based on HAL (Hardware Abstraction Layer) and it uses interrupt configuration to transmit/receive data.
When customer starts a new project using CubeMX, it must:

• Configure specific UART IP as async mode both directions

• UART must have enabled global interrupts, to allow transmitting/receiving data using interrupts

• Application must pass pointer to UART handle when calling ow_init function

Tip: Special example has been developed to demonstrate how can application use multiple OneWire instances on
multiple UART ports at the same time. It uses custom argument to determine which UART handle shall be used for
data transmit. Check /examples/stm32/ folder for actual implementation.

26 Chapter 5. Table of contents

LwOW

Listing 7: Actual implementation of low-level driver for STM32 with
HAL drivers

1 /**
2 * \file lwow_ll_stm32_hal.c
3 * \brief UART driver implementation for STM32 with HAL code
4 */
5

6 /*
7 * Copyright (c) 2020 Tilen MAJERLE
8 *
9 * Permission is hereby granted, free of charge, to any person

10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without restriction,
12 * including without limitation the rights to use, copy, modify, merge,
13 * publish, distribute, sublicense, and/or sell copies of the Software,
14 * and to permit persons to whom the Software is furnished to do so,
15 * subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be
18 * included in all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
22 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
23 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
24 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
25 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
26 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 *
29 * This file is part of LwOW - Lightweight onewire library.
30 *
31 * Author: Tilen MAJERLE <tilen@majerle.eu>
32 * Version: v3.0.0
33 */
34

35 /*
36 * How it works (general)
37 *
38 * https://docs.majerle.eu/projects/lwow/en/latest/user-manual/hw_connection.html#
39 *
40 * This specific driver is optimized for proejcts generated by STM32CubeMX or

→˓STM32CubeIDE with HAL drivers
41 * It can be used w/ or w/o operating system and it uses interrupts & polling for

→˓data receive and data transmit.
42 *
43 * Application must pass pointer to UART handle as argument to ow_init function in

→˓order
44 * to link OW instance with actual UART hardware used for OW instance.
45 *
46 * To use this driver, application must:
47 * - Enable interrupt in CubeMX to allow HAL_UART_Receive_IT functionality
48 * - Use pointer to UART handle when initializing ow with ow_init
49 */
50 #include "lwow/lwow.h"
51 #include "main.h" /* Generated normally by CubeMX */

(continues on next page)

5.2. User manual 27

LwOW

(continued from previous page)

52

53 #if !__DOXYGEN__
54

55 static uint8_t init(void* arg);
56 static uint8_t deinit(void* arg);
57 static uint8_t set_baudrate(uint32_t baud, void* arg);
58 static uint8_t transmit_receive(const uint8_t* tx, uint8_t* rx, size_t len, void*

→˓arg);
59

60 /* STM32 LL driver for OW */
61 const lwow_ll_drv_t
62 lwow_ll_drv_stm32_hal = {
63 .init = init,
64 .deinit = deinit,
65 .set_baudrate = set_baudrate,
66 .tx_rx = transmit_receive,
67 };
68

69 static uint8_t
70 init(void* arg) {
71 UART_HandleTypeDef* huart = arg;
72

73 LWOW_ASSERT0("arg != NULL", arg != NULL);
74

75 /* Initialize UART */
76 HAL_UART_DeInit(huart);
77 return HAL_UART_Init(huart) == HAL_OK;
78 }
79

80 static uint8_t
81 deinit(void* arg) {
82 UART_HandleTypeDef* huart = arg;
83

84 LWOW_ASSERT0("arg != NULL", arg != NULL);
85

86 return HAL_UART_DeInit(huart);
87 }
88

89 static uint8_t
90 set_baudrate(uint32_t baud, void* arg) {
91 UART_HandleTypeDef* huart = arg;
92

93 LWOW_ASSERT0("arg != NULL", arg != NULL);
94

95 huart->Init.BaudRate = baud;
96 return init(huart);
97 }
98

99 static uint8_t
100 transmit_receive(const uint8_t* tx, uint8_t* rx, size_t len, void* arg) {
101 UART_HandleTypeDef* huart = arg;
102 uint32_t start;
103

104 LWOW_ASSERT0("arg != NULL", arg != NULL);
105

106 /* Get current HAL tick */
107 start = HAL_GetTick();

(continues on next page)

28 Chapter 5. Table of contents

LwOW

(continued from previous page)

108

109 /* Start RX in interrupt mode */
110 HAL_UART_Receive_IT(huart, rx, len);
111

112 /* Process TX in polling mode */
113 HAL_UART_Transmit(huart, (void*)tx, len, 100);
114

115 /* Wait RX to finish */
116 while (huart->RxState != HAL_UART_STATE_READY) {
117 if (HAL_GetTick() - start > 100) {
118 return 0;
119 }
120 }
121

122 return 1;
123 }
124

125 #endif /* !__DOXYGEN__ */

5.3 API reference

List of all the modules:

5.3.1 LwOW

group LWOW
Lightweight onewire.

Note Functions with _raw suffix do no implement locking mechanism when used with operating system.

Defines

LWOW_UNUSED(x)
Unused variable macro

LWOW_ASSERT(msg, c)
Assert check function.

It returns lwowERRPAR if condition check fails

Parameters

• [in] msg: Optional message parameter to print on failure

• [in] c: Condition to check for

LWOW_ASSERT0(msg, c)
Assert check function with return 0

It returns 0 if condition check fails

Parameters

5.3. API reference 29

LwOW

• [in] msg: Optional message parameter to print on failure

• [in] c: Condition to check for

LWOW_ARRAYSIZE(x)
Get size of statically declared array.

Return Number of array elements

Parameters

• [in] x: Input array

LWOW_CMD_RSCRATCHPAD
Read scratchpad command for 1-Wire devices

LWOW_CMD_WSCRATCHPAD
Write scratchpad command for 1-Wire devices

LWOW_CMD_CPYSCRATCHPAD
Copy scratchpad command for 1-Wire devices

LWOW_CMD_RECEEPROM
Read EEPROM command

LWOW_CMD_RPWRSUPPLY
Read power supply command

LWOW_CMD_SEARCHROM
Search ROM command

LWOW_CMD_READROM
Read ROM command

LWOW_CMD_MATCHROM
Match ROM command. Select device with specific ROM

LWOW_CMD_SKIPROM
Skip ROM, select all devices

Typedefs

typedef lwowr_t (*lwow_search_cb_fn)(lwow_t *const ow, const lwow_rom_t *const
rom_id, size_t index, void *arg)

Search callback function implementation.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: Rom address when new device detected. Set to NULL when search finished

• [in] index: Current device index When rom_id = NULL, value indicates number of total
devices found

• [in] arg: Custom user argument

30 Chapter 5. Table of contents

LwOW

Enums

enum lwowr_t
1-Wire result enumeration

Values:

enumerator lwowOK = 0x00
Device returned OK

enumerator lwowERRPRESENCE
Presence was not successful

enumerator lwowERRNODEV
No device connected, maybe device removed during scan?

enumerator lwowERRTXRX
Error while exchanging data

enumerator lwowERRBAUD
Error setting baudrate

enumerator lwowERRPAR
Parameter error

enumerator lwowERR
General-Purpose error

Functions

lwowr_t lwow_init(lwow_t *const ow, const lwow_ll_drv_t *const ll_drv, void *arg)
Initialize OneWire instance.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: OneWire instance

• [in] ll_drv: Low-level driver

• [in] arg: Custom argument

void lwow_deinit(lwow_t *const ow)
Deinitialize OneWire instance.

Parameters

• [in] ow: OneWire instance

lwowr_t lwow_protect(lwow_t *const ow, const uint8_t protect)
Protect 1-wire from concurrent access.

Note Used only for OS systems

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [in] protect: Set to 1 to protect core, 0 otherwise

5.3. API reference 31

LwOW

lwowr_t lwow_unprotect(lwow_t *const ow, const uint8_t protect)
Unprotect 1-wire from concurrent access.

Note Used only for OS systems

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [in] protect: Set to 1 to protect core, 0 otherwise

lwowr_t lwow_reset_raw(lwow_t *const ow)
Reset 1-Wire bus and set connected devices to idle state.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

lwowr_t lwow_reset(lwow_t *const ow)
Reset 1-Wire bus and set connected devices to idle state.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

lwowr_t lwow_write_byte_ex_raw(lwow_t *const ow, const uint8_t btw, uint8_t *const br)
Write byte over OW and read its response.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [in] btw: Byte to write

• [out] br: Pointer to read value. Set to NULL if not used

lwowr_t lwow_write_byte_ex(lwow_t *const ow, const uint8_t btw, uint8_t *const br)
Write byte over OW and read its response.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

• [in] btw: Byte to write

• [out] br: Pointer to read value. Set to NULL if not used

lwowr_t lwow_read_byte_ex_raw(lwow_t *const ow, uint8_t *const br)
Read byte from OW device.

32 Chapter 5. Table of contents

LwOW

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [out] br: Pointer to save read value

lwowr_t lwow_read_byte_ex(lwow_t *const ow, uint8_t *const br)
Read byte from OW device.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

• [out] br: Pointer to save read value

lwowr_t lwow_read_bit_ex_raw(lwow_t *const ow, uint8_t *const br)
Read sinle bit from OW device.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [out] br: Pointer to save read value, either 1 or 0

lwowr_t lwow_read_bit_ex(lwow_t *const ow, uint8_t *const br)
Read sinle bit from OW device.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

• [out] br: Pointer to save read value, either 1 or 0

lwowr_t lwow_search_reset_raw(lwow_t *const ow)
Reset search.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

lwowr_t lwow_search_reset(lwow_t *const ow)
Reset search.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

5.3. API reference 33

LwOW

• [inout] ow: 1-Wire handle

lwowr_t lwow_search_raw(lwow_t *const ow, lwow_rom_t *const rom_id)
Search for devices on 1-wire bus.

Note To reset search and to start over, use lwow_search_reset function

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [out] rom_id: Pointer to ROM structure to save ROM

lwowr_t lwow_search(lwow_t *const ow, lwow_rom_t *const rom_id)
Search for devices on 1-wire bus.

Note To reset search and to start over, use lwow_search_reset function

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

• [out] rom_id: Pointer to ROM structure to save ROM

lwowr_t lwow_search_with_command_raw(lwow_t *const ow, const uint8_t cmd,
lwow_rom_t *const rom_id)

Search for devices on 1-wire bus with custom search command.

Note To reset search and to start over, use lwow_search_reset function

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [inout] ow: 1-Wire handle

• [in] cmd: command to use for search operation

• [out] rom_id: Pointer to ROM structure to store address

lwowr_t lwow_search_with_command(lwow_t *const ow, const uint8_t cmd, lwow_rom_t
*const rom_id)

Search for devices on 1-wire bus with custom search command.

Note To reset search and to start over, use lwow_search_reset function

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

• [in] cmd: command to use for search operation

• [out] rom_id: Pointer to ROM structure to store address

34 Chapter 5. Table of contents

LwOW

lwowr_t lwow_search_with_command_callback(lwow_t *const ow, const uint8_t cmd,
size_t *const roms_found, const
lwow_search_cb_fn func, void *const
arg)

Search devices on 1-wire network by using callback function and custom search command.

When new device is detected, callback function func is called to notify user

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] cmd: 1-Wire search command

• [out] roms_found: Output variable to save number of found devices. Set to NULL if not
used

• [in] func: Callback function to call for each device

• [in] arg: Custom user argument, used in callback function

lwowr_t lwow_search_with_callback(lwow_t *const ow, size_t *const roms_found, const
lwow_search_cb_fn func, void *const arg)

Search devices on 1-wire network by using callback function and SEARCH_ROM 1-Wire command.

When new device is detected, callback function func is called to notify user

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [out] roms_found: Output variable to save number of found devices. Set to NULL if not
used

• [in] func: Callback function to call for each device

• [in] arg: Custom user argument, used in callback function

lwowr_t lwow_search_devices_with_command_raw(lwow_t *const ow, const uint8_t
cmd, lwow_rom_t *const rom_id_arr,
const size_t rom_len, size_t *const
roms_found)

Search for devices on 1-Wire network with command and store ROM IDs to input array.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] cmd: 1-Wire search command

• [in] rom_id_arr: Pointer to output array to store found ROM IDs into

• [in] rom_len: Length of input ROM array

5.3. API reference 35

LwOW

• [out] roms_found: Output variable to save number of found devices. Set to NULL if not
used

lwowr_t lwow_search_devices_with_command(lwow_t *const ow, const uint8_t cmd,
lwow_rom_t *const rom_id_arr, const
size_t rom_len, size_t *const roms_found)

Search for devices on 1-Wire network with command and store ROM IDs to input array.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] cmd: 1-Wire search command

• [in] rom_id_arr: Pointer to output array to store found ROM IDs into

• [in] rom_len: Length of input ROM array

• [out] roms_found: Output variable to save number of found devices. Set to NULL if not
used

lwowr_t lwow_search_devices_raw(lwow_t *const ow, lwow_rom_t *const rom_id_arr,
const size_t rom_len, size_t *const roms_found)

Search for devices on 1-Wire network with default command and store ROM IDs to input array.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id_arr: Pointer to output array to store found ROM IDs into

• [in] rom_len: Length of input ROM array

• [out] roms_found: Output variable to save number of found devices. Set to NULL if not
used

lwowr_t lwow_search_devices(lwow_t *const ow, lwow_rom_t *const rom_id_arr, const
size_t rom_len, size_t *const roms_found)

Search for devices on 1-Wire network with default command and store ROM IDs to input array.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id_arr: Pointer to output array to store found ROM IDs into

• [in] rom_len: Length of input ROM array

• [out] roms_found: Output variable to save number of found devices. Set to NULL if not
used

lwowr_t lwow_match_rom_raw(lwow_t *const ow, const lwow_rom_t *const rom_id)
Select device on 1-wire network with exact ROM number.

36 Chapter 5. Table of contents

LwOW

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to match device

lwowr_t lwow_match_rom(lwow_t *const ow, const lwow_rom_t *const rom_id)
Select device on 1-wire network with exact ROM number.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to match device

lwowr_t lwow_skip_rom_raw(lwow_t *const ow)
Skip ROM address and select all devices on the network.

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: 1-Wire handle

lwowr_t lwow_skip_rom(lwow_t *const ow)
Skip ROM address and select all devices on the network.

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

uint8_t lwow_crc(const void *const in, const size_t len)
Calculate CRC-8 of input data.

Return Calculated CRC

Note This function is reentrant

Parameters

• [in] in: Input data

• [in] len: Number of bytes

uint8_t lwow_write_byte_raw(lwow_t *const ow, const uint8_t b)
Write byte over 1-wire protocol.

Note This function is deprecated. Use lwow_write_byte_ex_raw instead

Return Received byte over 1-wire protocol

Parameters

5.3. API reference 37

LwOW

• [inout] ow: 1-Wire handle

• [in] b: Byte to write

uint8_t lwow_write_byte(lwow_t *const ow, const uint8_t b)
Write byte over 1-wire protocol.

Note This function is deprecated. Use lwow_write_byte_ex_raw instead

Return Received byte over 1-wire protocol

Note This function is deprecated. Use lwow_write_byte_ex instead

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

• [in] b: Byte to write

uint8_t lwow_read_byte_raw(lwow_t *const ow)
Read next byte on 1-Wire.

Note This function is deprecated. Use lwow_read_byte_ex_raw instead

Return Byte read over 1-Wire

Parameters

• [inout] ow: 1-Wire handle

uint8_t lwow_read_byte(lwow_t *const ow)
Read next byte on 1-Wire.

Note This function is deprecated. Use lwow_read_byte_ex_raw instead

Return Byte read over 1-Wire

Note This function is deprecated. Use lwow_read_byte_ex instead

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

uint8_t lwow_read_bit_raw(lwow_t *const ow)
Read single bit on 1-Wire network.

Note This function is deprecated. Use lwow_read_bit_ex_raw instead

Return Bit value

Parameters

• [inout] ow: 1-Wire handle

uint8_t lwow_read_bit(lwow_t *const ow)
Read single bit on 1-Wire network.

Note This function is deprecated. Use lwow_read_bit_ex_raw instead

38 Chapter 5. Table of contents

LwOW

Return Bit value

Note This function is deprecated. Use lwow_read_bit_ex instead

Note This function is thread-safe

Parameters

• [inout] ow: 1-Wire handle

struct lwow_rom_t
#include <lwow.h> ROM structure.

Public Members

uint8_t rom[8]
8-bytes ROM address

struct lwow_t
#include <lwow.h> 1-Wire structure

Public Members

lwow_rom_t rom
ROM address of last device found. When searching for new devices, we always need last found
address, to be able to decide which way to go next time during scan.

uint8_t disrepancy
Disrepancy value on last search

void *arg
User custom argument

const lwow_ll_drv_t *ll_drv
Low-level functions driver

LWOW_CFG_OS_MUTEX_HANDLE mutex
Mutex handle

5.3.2 LwOW configuration

This is the default configuration of the middleware. When any of the settings shall be modified, it shall be done in
dedicated application config lwow_opts.h file.

Note: Check Getting started to create configuration file.

group LWOW_OPT
OW options.

5.3. API reference 39

LwOW

Defines

LWOW_CFG_OS
Enables 1 or disables 0 operating system support in the library.

Note When LWOW_CFG_OS is enabled, user must implement functions in System functions group.

LWOW_CFG_OS_MUTEX_HANDLE
Mutex handle type.

Note This value must be set in case LWOW_CFG_OS is set to 1. If data type is not known to compiler,
include header file with definition before you define handle type

5.3.3 Platform specific

List of all the modules:

Low-level driver

group LWOW_LL
Low-level device dependant functions.

struct lwow_ll_drv_t
#include <lwow.h> 1-Wire low-level driver structure

Public Members

uint8_t (*init)(void *arg)
Initialize low-level driver.

Return 1 on success, 0 otherwise
Parameters

• [in] arg: Custom argument passed to lwow_init function

uint8_t (*deinit)(void *arg)
De-initialize low-level driver.

Return 1 on success, 0 otherwise
Parameters

• [in] arg: Custom argument passed to lwow_init function

uint8_t (*set_baudrate)(uint32_t baud, void *arg)
Set UART baudrate.

Return 1 on success, 0 otherwise
Parameters

• [in] baud: Baudrate to set in units of bauds, normally 9600 or 115200
• [in] arg: Custom argument passed to lwow_init function

uint8_t (*tx_rx)(const uint8_t *tx, uint8_t *rx, size_t len, void *arg)
Transmit and receive bytes over UART hardware (or custom implementation)

Bytes array for tx is already prepared to be directly transmitted over UART hardware, no data ma-
nipulation is necessary.

40 Chapter 5. Table of contents

LwOW

At the same time, library must read received data on RX port and put it to rx data array, one by one,
up to len number of bytes

Return 1 on success, 0 otherwise
Parameters

• [in] tx: Data to transmit over UART
• [out] rx: Array to write received data to
• [in] len: Number of bytes to exchange
• [in] arg: Custom argument passed to lwow_init function

System functions

System function are used in conjunction with thread safety. These are required when operating system is used and
multiple threads want to access to the same OneWire instance.

Tip: Check Thread safety and Porting guide for instructions on how to port.

Below is a list of function prototypes and its implementation details.

group LWOW_SYS
System functions when used with operating system.

Functions

uint8_t lwow_sys_mutex_create(LWOW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)
Create a new mutex and assign value to handle.

Return 1 on success, 0 otherwise

Parameters

• [out] mutex: Output variable to save mutex handle

• [in] arg: User argument passed on lwow_init function

uint8_t lwow_sys_mutex_delete(LWOW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)
Delete existing mutex and invalidate mutex variable.

Return 1 on success, 0 otherwise

Parameters

• [in] mutex: Mutex handle to remove and invalidate

• [in] arg: User argument passed on lwow_init function

uint8_t lwow_sys_mutex_wait(LWOW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)
Wait for a mutex until ready (unlimited time)

Return 1 on success, 0 otherwise

Parameters

• [in] mutex: Mutex handle to wait for

• [in] arg: User argument passed on lwow_init function

5.3. API reference 41

LwOW

uint8_t lwow_sys_mutex_release(LWOW_CFG_OS_MUTEX_HANDLE *mutex, void *arg)
Release already locked mutex.

Return 1 on success, 0 otherwise

Parameters

• [in] mutex: Mutex handle to release

• [in] arg: User argument passed on lwow_init function

5.3.4 Device drivers

List of all supported device drivers

DS18x20 temperature sensor

group LWOW_DEVICE_DS18x20
Device driver for DS18x20 temperature sensor.

Note Functions with _raw suffix do no implement locking mechanism when using with operating system.

Defines

LWOW_DS18X20_ALARM_DISABLE
Disable alarm temperature

LWOW_DS18X20_ALARM_NOCHANGE
Do not modify current alarm settings

LWOW_DS18X20_TEMP_MIN
Minimum temperature

LWOW_DS18X20_TEMP_MAX
Maximal temperature

Functions

uint8_t lwow_ds18x20_start_raw(lwow_t *const ow, const lwow_rom_t *const rom_id)
Start temperature conversion on specific (or all) devices.

Return 1 on success, 0 otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to start measurement for. Set to NULL to start measure-
ment on all devices at the same time

uint8_t lwow_ds18x20_start(lwow_t *const ow, const lwow_rom_t *const rom_id)
Start temperature conversion on specific (or all) devices.

Return 1 on success, 0 otherwise

Note This function is thread-safe

42 Chapter 5. Table of contents

LwOW

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to start measurement for. Set to NULL to start measure-
ment on all devices at the same time

uint8_t lwow_ds18x20_read_raw(lwow_t *const ow, const lwow_rom_t *const rom_id, float
*const t)

Read temperature previously started with lwow_ds18x20_start.

Return 1 on success, 0 otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to read data from

• [out] t: Pointer to output float variable to save temperature

uint8_t lwow_ds18x20_read(lwow_t *const ow, const lwow_rom_t *const rom_id, float
*const t)

Read temperature previously started with lwow_ds18x20_start.

Return 1 on success, 0 otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to read data from

• [out] t: Pointer to output float variable to save temperature

uint8_t lwow_ds18x20_set_resolution_raw(lwow_t *const ow, const lwow_rom_t
*const rom_id, const uint8_t bits)

Set resolution for DS18B20 sensor.

Note DS18S20 has fixed 9-bit resolution

Return 1 on success, 0 otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to set resolution

• [in] bits: Number of resolution bits. Possible values are 9 - 12

uint8_t lwow_ds18x20_set_resolution(lwow_t *const ow, const lwow_rom_t *const
rom_id, const uint8_t bits)

Set resolution for DS18B20 sensor.

Note DS18S20 has fixed 9-bit resolution

Return 1 on success, 0 otherwise

Note This function is thread-safe

Parameters

5.3. API reference 43

LwOW

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to set resolution

• [in] bits: Number of resolution bits. Possible values are 9 - 12

uint8_t lwow_ds18x20_get_resolution_raw(lwow_t *const ow, const lwow_rom_t
*const rom_id)

Get resolution for DS18B20 device.

Return Resolution in units of bits (9 - 12) on success, 0 otherwise

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to get resolution from

uint8_t lwow_ds18x20_get_resolution(lwow_t *const ow, const lwow_rom_t *const
rom_id)

Get resolution for DS18B20 device.

Return Resolution in units of bits (9 - 12) on success, 0 otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to get resolution from

uint8_t lwow_ds18x20_set_alarm_temp_raw(lwow_t *const ow, const lwow_rom_t
*const rom_id, int8_t temp_l, int8_t temp_h)

Set/clear temperature alarm high/low levels in units of degree Celcius.

Example usage would look something similar to:

//Set alarm temperature; low = 10°C, high = 30°C
lwow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);
//Set alarm temperature; low = disable, high = no change
lwow_ds18x20_set_alarm_temp(&ow, dev_id, LWOW_DS18X20_ALARM_DISABLE, LWOW_
→˓DS18X20_ALARM_NOCHANGE);
//Set alarm temperature; low = no change, high = disable
lwow_ds18x20_set_alarm_temp(&ow, dev_id, LWOW_DS18X20_ALARM_NOCHANGE, LWOW_
→˓DS18X20_ALARM_DISABLE);
//Set alarm temperature; low = 10°C, high = 30°C
lwow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);

Note temp_h and temp_l are high and low temperature alarms and can accept different values:

• -55 % 125, valid temperature range

• LWOW_DS18X20_ALARM_DISABLE to disable temperature alarm (either high or low)

• LWOW_DS18X20_ALARM_NOCHANGE to keep current alarm temperature (either high or low)

Return 1 on success, 0 otherwise

Parameters

• [in] ow: 1-Wire handle

44 Chapter 5. Table of contents

LwOW

• [in] rom_id: 1-Wire device address

• [in] temp_l: Alarm low temperature

• [in] temp_h: Alarm high temperature

uint8_t lwow_ds18x20_set_alarm_temp(lwow_t *const ow, const lwow_rom_t *const
rom_id, int8_t temp_l, int8_t temp_h)

Set/clear temperature alarm high/low levels in units of degree Celcius.

Example usage would look something similar to:

//Set alarm temperature; low = 10°C, high = 30°C
lwow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);
//Set alarm temperature; low = disable, high = no change
lwow_ds18x20_set_alarm_temp(&ow, dev_id, LWOW_DS18X20_ALARM_DISABLE, LWOW_
→˓DS18X20_ALARM_NOCHANGE);
//Set alarm temperature; low = no change, high = disable
lwow_ds18x20_set_alarm_temp(&ow, dev_id, LWOW_DS18X20_ALARM_NOCHANGE, LWOW_
→˓DS18X20_ALARM_DISABLE);
//Set alarm temperature; low = 10°C, high = 30°C
lwow_ds18x20_set_alarm_temp(&ow, dev_id, 10, 30);

Note temp_h and temp_l are high and low temperature alarms and can accept different values:

• -55 % 125, valid temperature range

• LWOW_DS18X20_ALARM_DISABLE to disable temperature alarm (either high or low)

• LWOW_DS18X20_ALARM_NOCHANGE to keep current alarm temperature (either high or low)

Return 1 on success, 0 otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address

• [in] temp_l: Alarm low temperature

• [in] temp_h: Alarm high temperature

lwowr_t lwow_ds18x20_search_alarm_raw(lwow_t *const ow, lwow_rom_t *const
rom_id)

Search for DS18x20 devices with alarm flag.

Note To reset search, use lwow_search_reset function

Return lwowOK on success, member of lwowr_t otherwise

Parameters

• [in] ow: 1-Wire handle

• [out] rom_id: Pointer to 8-byte long variable to save ROM

lwowr_t lwow_ds18x20_search_alarm(lwow_t *const ow, lwow_rom_t *const rom_id)
Search for DS18x20 devices with alarm flag.

Note To reset search, use lwow_search_reset function

5.3. API reference 45

LwOW

Return lwowOK on success, member of lwowr_t otherwise

Note This function is thread-safe

Parameters

• [in] ow: 1-Wire handle

• [out] rom_id: Pointer to 8-byte long variable to save ROM

uint8_t lwow_ds18x20_is_b(lwow_t *const ow, const lwow_rom_t *const rom_id)
Check if ROM address matches DS18B20 device.

Return 1 on success, 0 otherwise

Note This function is reentrant

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to test against DS18B20

uint8_t lwow_ds18x20_is_s(lwow_t *const ow, const lwow_rom_t *const rom_id)
Check if ROM address matches DS18S20 device.

Return 1 on success, 0 otherwise

Note This function is reentrant

Parameters

• [in] ow: 1-Wire handle

• [in] rom_id: 1-Wire device address to test against DS18S20

5.4 Examples and demos

Various examples are provided for fast library evaluation on embedded systems. These are optimized prepared and
maintained for 2 platforms, but could be easily extended to more platforms:

• WIN32 examples, prepared as Visual Studio Community projects

• ARM Cortex-M examples for STM32, prepared as STM32CubeIDE GCC projects

Warning: Library is platform independent and can be used on any platform.

5.4.1 Example architectures

There are many platforms available today on a market, however supporting them all would be tough task for single
person. Therefore it has been decided to support (for purpose of examples) 2 platforms only, WIN32 and STM32.

46 Chapter 5. Table of contents

https://visualstudio.microsoft.com/vs/community/
https://www.st.com/en/development-tools/stm32cubeide.html

LwOW

WIN32

Examples for WIN32 are prepared as Visual Studio Community projects. You can directly open project in the IDE,
compile & debug.

To run examples on this architecture, external USB to UART converted would be necessary. Application opens COM
port and sends/receives data directly to there.

Tip: Push-pull to open-drain external converter might be necessary. Check Hardware connection with sensor for
more information.

STM32

Embedded market is supported by many vendors and STMicroelectronics is, with their STM32 series of microcon-
trollers, one of the most important players. There are numerous amount of examples and topics related to this archi-
tecture.

Examples for STM32 are natively supported with STM32CubeIDE, an official development IDE from STMicroelec-
tronics.

You can run examples on one of official development boards, available in repository examples.

Table 1: Supported development boards
Board name Onewire settings Debug settings

UART MTX MRX UART MDTX MDRX
STM32L496G-Discovery USART1 PB6 PG10 USART2 PA2 PD6
STM32F429ZI-Nucleo USART1 PA9 PA10 USART3 PD8 PD9

Pins to connect to 1-Wire sensor:

• MTX: MCU TX pin, connected to 1-Wire network data pin (together with MCU RX pin)

• MRX: MCU RX pin, connected to 1-Wire network data pin (together with MCU TX pin)

– TX pin is configured as open-drain and can be safely connected directly with RX pin

Other pins are for your information and are used for debugging purposes on board.

• MDTX: MCU Debug TX pin, connected via on-board ST-Link to PC

• MDRX: MCU Debug RX pin, connected via on-board ST-Link to PC

• Baudrate is always set to 921600 bauds

5.4.2 Examples list

Here is a list of all examples coming with this library.

Tip: Examples are located in /examples/ folder in downloaded package. Check Download library section to get
your package.

5.4. Examples and demos 47

https://visualstudio.microsoft.com/vs/community/
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/development-tools/stm32cubeide.html

LwOW

LwOW bare-metal

Simple example, not using operating system, showing basic configuration of the library. It can be also called bare-
metal implementation for simple applications.

LwOW OS

LwOW library as an example when multiple threads want to access to single LwOW core.

48 Chapter 5. Table of contents

INDEX

L
LWOW_ARRAYSIZE (C macro), 30
LWOW_ASSERT (C macro), 29
LWOW_ASSERT0 (C macro), 29
LWOW_CFG_OS (C macro), 40
LWOW_CFG_OS_MUTEX_HANDLE (C macro), 40
LWOW_CMD_CPYSCRATCHPAD (C macro), 30
LWOW_CMD_MATCHROM (C macro), 30
LWOW_CMD_READROM (C macro), 30
LWOW_CMD_RECEEPROM (C macro), 30
LWOW_CMD_RPWRSUPPLY (C macro), 30
LWOW_CMD_RSCRATCHPAD (C macro), 30
LWOW_CMD_SEARCHROM (C macro), 30
LWOW_CMD_SKIPROM (C macro), 30
LWOW_CMD_WSCRATCHPAD (C macro), 30
lwow_crc (C++ function), 37
lwow_deinit (C++ function), 31
LWOW_DS18X20_ALARM_DISABLE (C macro), 42
LWOW_DS18X20_ALARM_NOCHANGE (C macro), 42
lwow_ds18x20_get_resolution (C++ function),

44
lwow_ds18x20_get_resolution_raw (C++

function), 44
lwow_ds18x20_is_b (C++ function), 46
lwow_ds18x20_is_s (C++ function), 46
lwow_ds18x20_read (C++ function), 43
lwow_ds18x20_read_raw (C++ function), 43
lwow_ds18x20_search_alarm (C++ function), 45
lwow_ds18x20_search_alarm_raw (C++ func-

tion), 45
lwow_ds18x20_set_alarm_temp (C++ function),

45
lwow_ds18x20_set_alarm_temp_raw (C++

function), 44
lwow_ds18x20_set_resolution (C++ function),

43
lwow_ds18x20_set_resolution_raw (C++

function), 43
lwow_ds18x20_start (C++ function), 42
lwow_ds18x20_start_raw (C++ function), 42
LWOW_DS18X20_TEMP_MAX (C macro), 42
LWOW_DS18X20_TEMP_MIN (C macro), 42

lwow_init (C++ function), 31
lwow_ll_drv_t (C++ struct), 40
lwow_ll_drv_t::deinit (C++ member), 40
lwow_ll_drv_t::init (C++ member), 40
lwow_ll_drv_t::set_baudrate (C++ member),

40
lwow_ll_drv_t::tx_rx (C++ member), 40
lwow_match_rom (C++ function), 37
lwow_match_rom_raw (C++ function), 36
lwow_protect (C++ function), 31
lwow_read_bit (C++ function), 38
lwow_read_bit_ex (C++ function), 33
lwow_read_bit_ex_raw (C++ function), 33
lwow_read_bit_raw (C++ function), 38
lwow_read_byte (C++ function), 38
lwow_read_byte_ex (C++ function), 33
lwow_read_byte_ex_raw (C++ function), 32
lwow_read_byte_raw (C++ function), 38
lwow_reset (C++ function), 32
lwow_reset_raw (C++ function), 32
lwow_rom_t (C++ struct), 39
lwow_rom_t::rom (C++ member), 39
lwow_search (C++ function), 34
lwow_search_cb_fn (C++ type), 30
lwow_search_devices (C++ function), 36
lwow_search_devices_raw (C++ function), 36
lwow_search_devices_with_command (C++

function), 36
lwow_search_devices_with_command_raw

(C++ function), 35
lwow_search_raw (C++ function), 34
lwow_search_reset (C++ function), 33
lwow_search_reset_raw (C++ function), 33
lwow_search_with_callback (C++ function), 35
lwow_search_with_command (C++ function), 34
lwow_search_with_command_callback (C++

function), 34
lwow_search_with_command_raw (C++ func-

tion), 34
lwow_skip_rom (C++ function), 37
lwow_skip_rom_raw (C++ function), 37
lwow_sys_mutex_create (C++ function), 41

49

LwOW

lwow_sys_mutex_delete (C++ function), 41
lwow_sys_mutex_release (C++ function), 41
lwow_sys_mutex_wait (C++ function), 41
lwow_t (C++ struct), 39
lwow_t::arg (C++ member), 39
lwow_t::disrepancy (C++ member), 39
lwow_t::ll_drv (C++ member), 39
lwow_t::mutex (C++ member), 39
lwow_t::rom (C++ member), 39
lwow_unprotect (C++ function), 32
LWOW_UNUSED (C macro), 29
lwow_write_byte (C++ function), 38
lwow_write_byte_ex (C++ function), 32
lwow_write_byte_ex_raw (C++ function), 32
lwow_write_byte_raw (C++ function), 37
lwowr_t (C++ enum), 31
lwowr_t::lwowERR (C++ enumerator), 31
lwowr_t::lwowERRBAUD (C++ enumerator), 31
lwowr_t::lwowERRNODEV (C++ enumerator), 31
lwowr_t::lwowERRPAR (C++ enumerator), 31
lwowr_t::lwowERRPRESENCE (C++ enumerator),

31
lwowr_t::lwowERRTXRX (C++ enumerator), 31
lwowr_t::lwowOK (C++ enumerator), 31

50 Index

	Features
	Requirements
	Contribute
	License
	Table of contents
	Getting started
	User manual
	API reference
	Examples and demos

	Index

